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1 What is R? 
 
"The history of R begins at AT&T Bell laboratories, when they 
decided to develop a programming language designed to do 
statistical analysis - the result was the S language. S proved 
very popular with statisticians and led to a proposal to 
market it as a commercial product - after the addition of an 
extensive graphical user interface (GUI) to make it more user-
friendly - as S-Plus. Ross Ihaka and Robert Gentleman from the 
University of Auckland in New Zealand decided to write a pared 
down version of S for use in teaching. Following in the line 
of a series of minimalist computer program names (like C), the 
two R's named their teaching version of S ”R”. The R source 
code was released in 1995 under a General Public License 
(GPL). The development of R is now guided by an international 
development team and R is now easily downloaded from the 
internet from a network of CRAN (Comprehensive R Archive 
Network) mirror sites." (citation: Andy Hector,Zurich)
 
If you haven´t downloaded the R software package yet, you can 
easily get it from  
 
http://www.r-project.org 
 
Where you can also find lots of other interesting background 
information. 

 



 3

 
 
The corresponding download page is at  
 
http://cran.uk.r-project.org/ 
 
Simply click on "Precompiled Binary Distributions" and then on 
the version supporting your Operating System (e.g. Microsoft 
Windows, Linux or Mac OS). Then download the "base" package. 
 
Unpack the file and install R to a desired path (e.g. "C:"). 
Load the R Console, and you´re ready to experience R!  
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3 Why use R? 
 
If you like point-and-click adventures, you´re going to be 
fully satisfied with “big shots”, such as SPSS or Statistica. 
But there may come a time where you will notice that you´re 
going to have to start programming – even in SPSS. 
 
Have you ever tried a split-plot analysis of variance in SPSS? 
Well, you should, because eventually you´ll find out that it 
is not possible without switching to the syntax window. 
 
Or, have you tried installing the most recent releases of S-
Plus or SPSS? They are all server-based, watching with eagle´s 
eyes on how many different computers you try to install it. 
 
R is different. Not only that it´s free, it also offers state-
of-the-art statistical data analysis, high-level graphics, and 
the greatest flexibility you could ever dream of. What´s more, 
it will not only work with Windows-based systems, but also on 
Apple Mac OS and Linux. 
 
Of course, you are going to miss the menus. However, the 
problem with menus is that they are inefficient for repetitive 
tasks. The good thing about self-written syntax is: Once 
you've finished one project and moved onto a new one, you will 
soon find that you will already have a text file of an old 
analysis that can be edited and adapted for the new dataset. 
 
Now let´s move on to see what this all means. 
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4 Need Help? 
 
For help at any time, simply type ? or help.search("subject") 
where "subject" is the area you´re interested in; for example, 
if you want to know how to do an analysis of variance, simply 
type 
 
help.search("analysis of variance") 
 
Or, if you already know the command you´re interested in, just 
use the "?" command. Let´s say you want to know how to use 
"help.search": 
 
?help.search 
 
This gives you almost everything you need to know about how to 
use R help. 
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5 Contributed Packages 
 
If you install R for the first time, most things you might 
want to do will be possible – such as basic statistical 
operations, graphics and so on.  
 
Yet, you may come to a point where you wish to do more than 
just basic things. You may want to do something like 

- Import Excel files 
- Use tree models 
- Use mixed effects models 
- Do conditioned trellis graphics 
- Analyze spatial data 
- Create interactive plots, 

and so on. Whenever you want to do things like those mentioned 
above, you are lucky – because one of the main strengths of R 
is that there are loads of so-called "contributed packages" 
allowing you to install "extra components" for special 
purposes. Nothing is easier than installing those contributed 
packages – and in case you want to learn more, just try the 
following: 
 
If you want to know what packages are available in principle, 
use 
library() 
 
For more detailed information on an installed package, just 
type (for example) 
 
library(help="nlme")  
(gives an overview of the functions contained in the "nlme" 
package, with which you can do non-linear and linear mixed-
effects models) 
 
packageDescription("nlme") 
(shows the general package description and authorship) 
 

6 The commands and the scripts window 
 
When you start R for the first time, you will find that there 
are two basic possibilities to tell the program what to do: 
 

6.1 The commands window 
This is where you usually type in what you want R to do, using 
your keyboard.  
For those of you who haven´t tried out a programming language 
(such as Pascal or Basic) yet: The command line basically 
works like a text editor, but with the big difference that 
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what you type is "translated" to the computer, and eventually 
it will result in the computer "doing something" for you. 
 
For example, if you type 
 
Hello 
The computer´s "answer" will be: 
 
Error: Object "Hello" not found 
 
So you should try to type in something more meaningful, such 
as 
 
print("Hello") 
 
Now the computer knows what you want it to do. You tell it to 
print the text called "Hello" to the screen: 
 
[1] "Hello" 
 

 
 
 
 
 
 

 

6.2 The Script Window 
 
Go to the "File" Toolbar (or press "Ctrl"+"N") to create a new 
script window. As you will see, a script window opens. Here, 
you can basically do the same as described for the commands 
window, but with the additional feature of having more 
flexibility. 
 
Well, you won´t find out unless you try it out, so here is 
some R code to start with: 
 
x<-seq(-10,10,0.1) 
y<-exp(-0.5*x) 
plot(x,y,type="l",col="blue") 

 
 
 
 
 
 
 

 
 
 

Using the commands window is made even more convenient 
by a special feature: When you use your „up” and „down” 
arrow keys, you can access whatever you´ve typed before. 
Just try it out! 

After typing the code to the script window,  
- mark the text you want to run using your mouse or 
keyboard 
- press „Ctrl”+”R” to run the script 
- and just see what happens 
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Don´t worry too much about the code behind it (you´ll learn 
this later). What we have done is plotting a negative 
exponential function using blue line colours.  

 
 
 
 
 
 
 

 

6.3 Saving your work 
 
Whenever you want to save some text you´ve typed, some graph 
you´ve produced, and so on, just use your mouse cursor and 
open the "File" scroll-down menu. You should be able to save 
your file(s) to text or graphics format depending on what kind 
of file you have produced.  
The Graphical User Interface (GUI) also offers you to save any 
graph you produced by right-clicking with your mouse. 
 
But be prepared that even much more "magical" things are 
possible with R. For example, you can directly open Windows 
explorer from within R using the following command: 
 
system("explorer C:\\")  
 
Or the MS-DOS commands window using 

-10 -5 0 5 10

0
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Note, too, that the whole code you´ve run also appears 
in the „Commands Window”. Thus, you can now switch 
between both windows, depending on what you prefer to 
do. 
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system("cmd") 
 
If you wish to save data to a text file (for import into 
Excel), just use the write.table() command. 
 
Example: 
Create a dataframe consisting of two variables A and B: 
 
A<-seq(1,10,1) #creates two vectors A and B 
B<-rep("B",10) 
df<-data.frame(A,B) #creates a data frame 
 
Now export these data to a text file: 
 
write.table(df,"C:\\File1.txt") #saves the frame to a file 
 

6.4 The working directory 
 
Another important thing that you may wish to change is the 
working directory. This is the default directory into which R 
files, history files etc. are saved. 
 
First, it is useful to assess the current state of the working 
directory. This is done using 
 
getwd()  
 
For example, on my personal computer, this command gives 
 
[1] "E:/Programs/R/R-2.5.1" 
 
You can set the working directory by typing 
 
setwd("C:\\data\\examples") 
 
 
 

7 Importing and exporting data 

7.1 Importing from Microsoft Excel 
 
There are several possibilities for importing Excel files. All 
methods require the separate installation of specific data 
import-export libraries. 
The at current most convenient way is to use the new 
xlsReadWrite package. The syntax to be used is:  
 
read.xls( file,  
          colNames = TRUE,  
          sheet = 1,  
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          type = "data.frame", 
          from = 1,  
          rowNames = NA, colClasses = NA, checkNames = TRUE,  
          dateTimeAs = "numeric",  
          stringsAsFactors = default.stringsAsFactors() ) 
 
For example, a straightforward way of importing an Excel file 
called "sample.xls" might be: 
 
sample.data<-read.xls("C:\\sample.xls",sheet=1,colNames=T) 
 
 
A more old-fashioned way of importing Excel files is to 
establish a connection using a package called "RODBC". 
 
Loading the package is most convenient using the command 
"library()"  
 
library(RODBC) 
 
Now the corresponding excel file is opened as follows: 
 
z<-odbcConnectExcel("C:\\sample.xls") 
frame<-sqlFetch(z,"Sheet1") #or any other name of the sheet   
close(z) 
 
The attach() command connects the data frame to the column 
titles given in the first row (if header=T) 
 
attach(frame) 
 
Note that all import-export filters at current to not support 
XLSX files of Microsoft Office 2007.  
 
Note also that it can be dangerous to trust too much in simple 
Excel import-export filters. The proper way to deal with data 
in R is to work with tab-delimited text files. They use up far 
less space, and they will be readable even in 150 years from 
now (while Excel versions will always change every couple of 
years) 
 

7.2 Importing from a text file 
 
Rather than using Excel files, you should try to always import 
your datasets from text files. 
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Text files have several advantages over Excel files, 
including: 
 

• small size 
• every computer program can read them 
• they can be edited using the Windows notepad, or any 

other text editor 
• they force the user to have a very clear idea of the 

structure of a dataframe 
 
The standard textbook method is: 
 
frame<-read.table("C:\\sample.txt,header=T) 
attach(frame) 
 
The attach() command connects the data frame to the column 
titles given in the first row (if header=T) 
 
You will be likely to fail if you only use this basic command. 
If your dataset contains, say, empty cells or missing values, 
you should always use something like the command written 
below. 
 
frame<-read.table("C:\\sample.txt,header=T, 
na.strings="NA",sep="",dec=".",fill=T) 
attach(frame) 
 
sep gives the column separator; "" is for blank space 
na.strings indicates how missing values are labelled in the 
file 
dec indicates the sign used for decimal point ("." or ",") 
fill=T columns with unequal length are filled with blank cells 
 

7.3 Exporting data to a text file 
 
This is as easy as using read.table. 
 
write.table(x, file = "C:\\sample.txt",sep = " ", na = "NA", 
dec = ".")  
 
see the specifications for read.table. 
 
Remember that you should always adjust the commands to your 
own needs! Simply copying what I have written here will of 
course not always work - depending on the type of dataset you 
are dealing with. 
 
For example, if your Excel version works with decimal commas 
instead of decimal dots, you should use sep="\t" and dec="," 
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8 Typing in Data 
 
The "gets" assignment "<-" is probably the most important 
thing you will need to know when using R. 
 
"x <- 1"  reads "1 is assigned to x" 
  or, even easier to say, "x gets 1" 
 
 
Note that in new versions of R, you can also write 
 
x = 1    
 
but be careful not to confuse such statements with logical 
operators. For example, 
 
x[x=1] gives those values of x that have the value 1. 
 
Use the scan() command to read in data from the keyboard; 
terminate input by pressing "return" two times 
 
var<-scan() 
 
The c() command produces a vector (concatenate) consisting of 
the values given in brackets and separated by commas. 
 
var<-c(1,2,3,....) 
 
The rep() command repeats a value (or string) n times 
 
var<-rep(value,n) 
 
 
The seq() command produces a sequence from the start value to 
the end value with steps of size step. 
 
var<-seq(start,end,step) 
 
 

9 An introductory session 
 
To get a first impression on what you can do with R, let´s 
create an artificial dataset consisting of just two variables, 
x and y. While the x values are fixed, we want the y values to 
be dependent on x, but with some "random component" of 
variation ("scatter"). 
 
Make x = (1,2,3,...,20): 
 
x <- 1:20  
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Make y a linear function of x plus normally distributed 
deviations: 
 
y <- x+rnorm(x) 
 
 
Now create a plot of y against x: 
 
plot(x,y) 
 

 
 
This is a good time to get a feeling for R´s Graphical User 
Interface (GUI). 

 
Alternatively, you can set the options from the command line 
by typing 
 
options(graphics.record=TRUE) 
 
Now, returning to our graph: All data points seem to lie 
roughly along a straight line, so it is sensible to try to fit 
a linear regression through the data: 
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Be sure to go to the „History” Scroll-Down menu and check 
the „Recording” item. This makes handling and saving 
graph sheets much more convenient! 
 
You should try out the „Page Up” and „Page Down” keys and 
see how you can change between different graph sheets you 
have produced in your latest R session. 
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model1<-lm(y~x) 
abline(model1) 
 

 
 

summary(model1) gives the following output: 
 
Call: 
lm(formula = y ~ x) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.8794 -0.4967  0.1542  0.5370  1.4382  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.33633    0.46571   0.722    0.479     
x            0.98716    0.03888  25.392 1.51e-15 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 1.003 on 18 degrees of freedom 
Multiple R-Squared: 0.9728,     Adjusted R-squared: 0.9713  
F-statistic: 644.8 on 1 and 18 DF,  p-value: 1.510e-15 
 
 
This shows the values for the coefficients (the intercept and 
the slope) plus their standard errors. We see, that the 
intercept is about 0.3 (compare this to the graph!) and the 
slope is roughly 1 (as expected). The multiple R² value is 
0.97, which means that our regression line explains about 97% 
of the data points. 
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10 Working with large datasets 
 
R has some major advantages over many other statistical 
software packages (and spreadsheet-based applications such as 
MS Excel).  
So let us create a sample dataset with hundred columns and 
thousand rows to see the ´power´ of R! 
 
x<-rnorm(100*1000) 
dim(x)<-c(1000,100) 
fix(x) 
 
- "rnorm" samples from a standard normal distribution 100*1000 
times 
- "dim" tells R that x shall be divided into 1000 rows and 100 
columns 
- "fix" lets us inspect the newly created dataset in a 
spreadsheet-like manner 
 
             col1   col2 col3 col4 
 [1,]  -1.24650940  -1.1467091 -0.74042771 -0.005724874 
 [2,]  -0.01967889  -0.2151414  0.09073095  0.425347667   
 [3,]   0.89854828  -0.1263240 -0.77334287  0.807388085 
 [4,]  -0.92055640  -2.4847047 -0.04134650 -0.309679654   
 [5,]   0.06183694   0.7479552  0.85152309 -2.000672747 
 [6,]  -0.34801913  -0.7275596 -0.96744469 -1.198995246 
 [7,]   0.23341553   0.3177949 -0.23907289 -1.804130980   
 [8,]  -1.38771819   0.7156175  0.28950161  0.549642668 
 [9,]   0.91197232   0.7816294 -0.68355235  0.215647213   
[10,]  -0.21823882   0.3123124 -0.19459990 -0.672982445   
 
 
This shows the principal arrangements of "spreadsheets" (data 
frames, matrices) in R: 
 
The rows and columns are addressed using pairs of x and y 
values of the form [row,column]. Thus, the cell in the first 
row of column 1 would be addressed as x[1,1]: 
 
> x[1,1] 
[1] -1.246509 
 
The cell in the 7th row of column 4 would be addressed as 
x[7,4]: 
 
> x[7,4] 
[1] -1.804131 
 
So this looks O.K.; Let´s now calculate the sum of every row 
(i.e., thousand row sums): 
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rowSums(x) 
 
Similarly, we can do this for all the 100 columns: 
 
colSums(x) 
 
Now for the tricky part: Why don´t we create a hundred graphs 
from this dataset? Well, in any point-and-click software 
package, this would mean at least one day of work (selecting 
any one column and plotting it against any other!) – in R it´s 
just that easy: 
 
par(ask=T) 
 
 
This tells the graphics device to let you press "return" to 
see the next graph. And then: 
 
for (i in 1:99) plot(x[,i],x[,i+1] 
 
That´s all we need! Well, to make the graphs look a bit 
better, we would ideally want to have each x and y axis 
labelled, so the full call to R could look like: 
 
for (i in 1:99) plot(x[,i],x[,i+1], 
xlab=c("x",i),ylab=c("x",i+1), 
main=c("The ",i,"th plot") 
 
These two lines tell R to plot each column (i) in the 
dataframe against each next column (i+1), so that we end up 
with 99 plots in total. The code reads as follows: 
 
for (i in 1:99).......do the following thing 99 times: 
plot..................create a new plot with 
x[,i].................the i´th column against 
x[,i+1]...............the (i+1)th column 
xlab..................label the x axis with: 
c("x",i).............."x" and the column number (i) and 
ylab..................label the y axis with: 
c("x",i+1)............"x" and the next column number (i+1) 
main..................give the graph a main title which is 
c("The ",i,"th plot").numbered from 1 to i 
 
Now let´s take this a step further and add regression lines 
and correlation coefficients to each of the 99 plots: 
 
 
for (i in 1:99)  
{ correl<-cor(x[,i],x[,i+1]) 
plot(x[,i],x[,i+1],xlab=c("x",i),ylab=c("x",i+1), 
main=c("Correlation:",correl)) 
abline(lsfit(x[,i],x[,i+1])) 
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} 
 
The code now reads as follows: 
 
for (i in 1:99).......do the following thing 99 times: 
correl<-..............create a variable called "correl" 
cor(x[,i],x[,i+1])....calculate the correlation coefficient 
plot..................plot the same thing as before 
abline................create a line based on the formula: 
lsfit(x[,i],x[,i+1])..a regression of x[,i] against x[,i+1] 
 

 
 
 
 

11 Sorting and summarizing data 
 
Let´s now come back to an easier dataset; we make it very 
small so that everything is quick and easy to see: 
 
x<-c("c","a","b") 
y<-c(10,13,20) 
z<-c(5,10,1) 
w<-cbind(x,y,z) 
 
w 
     x   y    z    
[1,] "c" "10" "5"  
[2,] "a" "13" "10" 
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[3,] "b" "20" "1" 
 
There are three columns (x,y and z) and three rows. Column x 
contains a categorical variable with the levels "a", "b" and 
"c". Y and z are numerical. We now want to sort the data in 
this small data frame. We can do this individually (i.e. 
column-wise) using sort: 
 
sort(w[,1]) 
[1] "a" "b" "c" 
 
But ideally we want the whole dataframe w to be sorted, e.g. 
after column 1: 
 
w[order(w[,1]),] 
     x   y    z    
[1,] "a" "13" "10" 
[2,] "b" "20" "1"  
[3,] "c" "10" "5" 
 
Additionally, we might want to have some quantitative 
summaries, such as 
 
table(w) 
w 
 1 10 13 20  5  a  b  c  
 1  2  1  1  1  1  1  1 
 
which shows how often elements occur in the dataframe; or 
 
summary(w) 
 x      y      z     
 a:1   10:1   1 :1   
 b:1   13:1   10:1   
 c:1   20:1   5 :1   
 
which gives a similar output, but column-wise. 
 
We can also calculate mean values for every level of x: 
 
tapply(y,x,mean) 
 
a  b  c  
13 20 10 
 
Which reads: "Apply the function ´mean´ to y for every value 
of x." 
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12 Creating high-level plots in R 
 
You can find out about the full capabilities of R´s graphics 
system by typing 
 
demo(graphics) 
 
which will create several built-in demo graphs.  
 

12.1 Exploratory Data Analysis 
 
So let´s try out the full capabilities of R, using datasets 
provided by the Software Developers. 
 
All available datasets can be accessed by typing 
 
data() 
 
Note: This function is only available in R, in S-Plus you´d 
have to type ?example 
 
 

12.2 Plotting a Histogram 
 
We start with a sample dataset on tree growth. 
 
attach(trees) 
names(trees) 

 
[1] "Girth"  "Height" 
[3] "Volume" 
 
hist(Height) 
 
We could also improve the output of our histogram, using 
 
hist(Height) 
 
hist(Height, breaks=5,ylim=c(0, 12),col="grey") 
 
 
Let´s further assume we want to see if our data are normally 
distributed: 
 
First, we need to find out the minimum and the maximum of 
Height: 
 
min(Height) 
[1] 63 
max(Height) 
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[1] 87 
 
hist(Height,breaks=63:87,col="grey") 
 
Now we can draw the corresponding normal curve using lines() 
and a call to the routine dnorm() to plot the curve. This 
involves several calculations: 
 
 
First, we have to create a vector of "artificial" x values for 
our normal curve. We do this by typing 
 
x.values<- seq(63,87,length=31) 
 
Now we create a corresponding vector of y values, which is 
going to be the height of our normal curve. The parameters we 
supply to the dnorm() function ("d" stands for "density") are: 
 
- the number of trees that were measured: length(Height) 
- the probability density for each tree, which is going to be  
  a normal distribution with mean mean(Height) and standard  
  deviation sd(Height) 
 
We stick this all together using 
 
y.values<- 
length(Height)* 
dnorm(  seq(63,87,length=31), mean(Height), sd(Height)) 
 
Finally, we say: 
 
lines(x.values,y.values) 
 
And it´s done! 
 
 
 

12.3 A simple Scatterplot 
 
Let´s use our trees dataset again. There are several different 
ways of producing scatterplots, which will be shown step by 
step. 
 
First, let´s set up a graphics window that is split into four 
parts, using the par() command. 
 
par(mfrow=c(2, 2)) 
  
This says: Set up a 2x2 panel screen (using mfrow); if you´d 
like, you could also increase the font size, using cex(): 
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par(mfrow=c(2, 2), cex=0.6) 
 
So let´s look at the data now: 
 
plot(Height, type="p") #gives only single points 
plot(Height, type="l") #gives invisible points joint by lines 
plot(Height, type="b") #gives both points and lines 
plot(Height, type="h") #gives the height of the y values 
 
plot(Height, type="l", col="blue") #changes the color 
plot(Height, type="l", col="red", lwd=3) #changes color&width  
plot(Height,log="x", type="l") #changes the scale of x axis 
plot(Height, type="l", lty="dotted") #line type is dotted now 
 
 

12.4 Plotting multivariate data 
 
Let´s use the Iris dataset. Here it is: 
 
fix(iris) 
 
Sepal.Length Sepal.Width  (...) and so on 
1            5.1         3.5 
2            4.9         3.0 
3            4.7         3.2 
4            4.6         3.1 
5            5.0         3.6 
6            5.4         3.9 
 
We want to see how the following variables: 
 
-sepal length,  
-sepal width,  
-petal length and  
-petal width  
 
are related to one another. We first increase font size using 
par(): 
 
par(cex=0.6) 
 
Now the pairs() command does the trick for us. We are only 
going to look at the first four columns in the dataset, using 
an index from 1 to 4: 
 
 
pairs(iris[1:4]) 
 

 
It is also possible to add scatterplot smoothers quickly to 
each of the panels: 
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pairs(iris[1:4],panel=panel.smooth) 
 

 
 
 
 
Another possibility to visualize multivariate data is using 
the coplot() command: 
 
 
#Data: 
 
y.variable <- c(1:20) 
x.variable <- c(21:40) 
f <- rep(c("level.1", "level.2", "level.3", "level.4"), c(5, 
5, 5, 5)) 
FACTOR <- factor(f) 
 
data.4.coplot <-data.frame(x.variable, y.variable, FACTOR) ; 
data.4.coplot 
 
Now we can plot y.variable as a function of x.variable 
conditioned by our categorical variable called FACTOR: 
 
coplot(y.variable ~ x.variable | FACTOR) 
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The panels in coplot() are read from bottom left via bottom 
right to top left and top right. 
 
 

12.5 Line plot 
 
x <- c(0.5, 2, 4, 8, 12, 16) 
y1 <- c(1, 1.3, 1.9, 3.4, 3.9, 4.8) 
y2 <- c(4, .8, .5, .45, .4, .3) 
par(las=1, mar=c(4, 4, 2, 4)) 
plot.new() 
 
plot.window(range(x), c(0, 6)) 
 
lines(x, y1) 
lines(x, y2) 
points(x, y1, pch=16, cex=2) 
points(x, y2, pch=21, bg="white", cex=2) 
 
par(col="grey50", fg="grey50", col.axis="grey50") 
axis(1, at=seq(0, 16, 4)) 
axis(2, at=seq(0, 6, 2)) 
axis(4, at=seq(0, 6, 2)) 
 
box(bty="u") 
mtext("Travel Time (s)", side=1, line=2, cex=0.8) 
mtext("Responses per Travel", side=2, line=2, las=0, cex=0.8) 
mtext("Responses per Second", side=4, line=2, las=0, cex=0.8) 
text(4, 5, "Bird 131") 
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par(mar=c(5.1, 4.1, 4.1, 2.1), col="black", fg="black", 
col.axis="black") 

 

12.6 Boxplot 
 
par(mar=c(3, 4.1, 2, 0)) 
     boxplot(len ~ dose, data = ToothGrowth, 
             boxwex = 0.25, at = 1:3 - 0.2, 
             subset= supp == "VC", col="grey90", 
             xlab="", 
             ylab="tooth length", ylim=c(0,35)) 
     mtext("Vitamin C dose mg", side=1, line=2.5, cex=0.8) 
     boxplot(len ~ dose, data = ToothGrowth, add = TRUE, 
             boxwex = 0.25, at = 1:3 + 0.2, 
             subset= supp == "OJ", col="grey70") 
     legend(1.5, 9, c("Ascorbic acid", "Orange juice"), 
bty="n", 
            fill = c("grey90", "grey70")) 
par(mar=c(5.1, 4.1, 4.1, 2.1)) 
 

 

12.7 Three-dimensional plots 
 
Here is an example from the Agricultural University of 
Copenhagen (Denmark): 
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mydata <- data.frame(x = runif(20, 0, 10), y = runif(20, 10, 
20), zinc = rnorm(20, 4, 2)) 
 
mydata[1:15, ] 
 
library(lattice) 
 
cloud(zinc~x*y,data=mydata,scales=list(arrows=F)) 
 
 
More complicated surfaces can be plotted using the wireframe 
function, which gives complex three-dimensional 
representations of data. The example below comes from Deepayan 
Sarkar, the programmer of the lattice library: 
 
First, we use expand.grid () to create the source dataset. 
 
surf <-expand.grid(x = seq(-pi, pi, length = 50), 
                y = seq(-pi, pi, length = 50)) 
 
Now the z variable (plotted perpendicularly to the x and y 
plane) shall be a complex sine function of x and y: 
 
surf$z <- 
    with(surf, { 
        d <- 3 * sqrt(x^2 + y^2) 
        exp(-0.02 * d^2) * sin(d) 
    }) 
 
g=surf 
 
wireframe(z ~ x * y, g, aspect = c(1, .5), 
          scales = list(arrows = FALSE)) 
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Now let us assume you would wish to add scatter points to this 
plot. 
 
To modify this plot, write an own panel function using 
panel.3d.wireframe: 
 
wireframe(z ~ x * y, g, aspect = c(1, .5), 
          scales = list(arrows = FALSE), 
          panel.3d.wireframe = function(...) { 
              panel.3dwire(...) 
          }) 
 
...and add points using 3dscatter; The trick is to make 
liberal use of the ... argument, only naming arguments that 
you need to work with or override. So our first try might be 
to write an explicit but minimal panel.3d.wireframe function 
that does nothing new: 
 
wireframe(z ~ x * y, g, aspect = c(1, .5), 
          scales = list(arrows = FALSE), 
          panel.3d.wireframe = function(x, y, z, ...) { 
              panel.3dwire(x = x, y = y, z = z, ...) 
          }) 
 
Now let's add a few points using panel.3dscatter: 
 
wireframe(z ~ x * y, g, aspect = c(1, .5), 
 
          scales = list(arrows = FALSE), 
          panel.3d.wireframe = function(x, y, z, ...) { 
              panel.3dwire(x = x, y = y, z = z, ...) 
              panel.3dscatter(x = runif(10, -0.5, 0.5), 
                              y = runif(10, -0.5, 0.5), 
                              z = runif(10, -0.25, 0.25), 
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                              ...) 
          }) 
 
 
Now usually the points to add to such a 3D plot will not be on 
the transformed 3D scale (they almost always will be on some 
original scale), whereas panel.3dwire wants data in a 
different (linearly shifted and scaled) scale suitable for 3-D 
transformations.  
 
In practice, you would have to make the conversion from data 
scale to transformed scale yourself,  and that's where the 
*lim and *lim.scaled arguments come in. They contain the range 
of the data cube in the original and transformed scales 
respectively.  
 
So let's say the points you want to add (in the original 
scale) are: 
 
pts <- 
    data.frame(x = runif(10, -pi, pi), 
               y = runif(10, -pi, pi), 
               z = runif(10, -1, 1)) 
 
Then the suitable transformation can be done as follows: 
 
wireframe(z ~ x * y, g, aspect = c(1, .5), 
          scales = list(arrows = FALSE), 
          pts = pts, 
          panel.3d.wireframe = 
          function(x, y, z, 
                   xlim, ylim, zlim, 
                   xlim.scaled, ylim.scaled, zlim.scaled, 
                   pts, 
                   ...) { 
              panel.3dwire(x = x, y = y, z = z, 
                           xlim = xlim, 
                           ylim = ylim, 
                           zlim = zlim, 
                           xlim.scaled = xlim.scaled, 
                           ylim.scaled = ylim.scaled, 
                           zlim.scaled = zlim.scaled, 
                           ...) 
              xx <- 
                  xlim.scaled[1] + diff(xlim.scaled) * 
                      (pts$x - xlim[1]) / diff(xlim) 
              yy <- 
                  ylim.scaled[1] + diff(ylim.scaled) * 
                      (pts$y - ylim[1]) / diff(ylim) 
              zz <- 
                  zlim.scaled[1] + diff(zlim.scaled) * 
                      (pts$z - zlim[1]) / diff(zlim) 
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              panel.3dscatter(x = xx, 
                              y = yy, 
                              z = zz, 
                              xlim = xlim, 
                              ylim = ylim, 
                              zlim = zlim, 
                              xlim.scaled = xlim.scaled, 
                              ylim.scaled = ylim.scaled, 
                              zlim.scaled = zlim.scaled, 
                              ...) 
          }) 
 
The resulting plot now contains the original wireframe, plus 
some added datapoints floating around in 3D space: 

 
 
 

12.8 Piecharts 
 
Here is an example of a piechart from the pie() help page: 
 
par(mar=c(0, 2, 1, 2), xpd=FALSE, cex=2) 
     pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12) 
     names(pie.sales) <- c("Blueberry", "Cherry", 
         "Apple", "Boston Cream", "Other", "Vanilla") 
     pie(pie.sales, col = gray(seq(0.4,1.0,length=6))) 
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12.9 Trellis Scatterplots 
 
Trellis plots offer several possibilities to visualize 
multidimensional data. Specifically, you can plot the response 
variable against several numerical and categorical explanatory 
variables at the same time. 
 
Trellis plots are highly effective, but they involve different 
sets of commands compared with standard graphics. 
 
To get a first feeling for how trellis graphics work, here is 
a comparison between xyplot() and plot(): 
 
plot(as.numeric(InsectSprays$spray),InsectSprays$count) 
xyplot(count~spray,data=InsectSprays) 
 

Conventional plot() xyplot() version
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So, in general, the most important difference between both 
plot types is the specification of (x,y) vs. (y~x). 
 
However, xyplots can become quite complex once you want to 
change things such as font sizes etc.; the command 
"trellis.par.get" lists all the components of a trellis plot 
that you might want to change: 
 
trellis.par.get() 
 
The list of parameters is huge; to change just a few of them, 
we type 
 
 
trellis.par.set( 
list(fontsize=list(text=14), 
par.xlab.text=list(cex=1.5), 
par.ylab.text=list(cex=1.5), 
par.sub.text=list(cex=1.5), 
add.text=list(cex=1.5), 
plot.symbol=list(pch=16,cex=1.3))) 
 
 
And then re-run the xyplot command: 
 
xyplot(count~spray,InsectSprays,scales=list(tck=-1,cex=1.5)) 

 
 
The barley dataset, included in the lattice library, serves as 
a further example: 
 
library(lattice) 
trellis.par.set(theme = canonical.theme("postscript", 
col=FALSE)) 
trellis.par.set(list(fontsize=list(text=6), 
              par.xlab.text=list(cex=1.5), 
                     add.text=list(cex=1.5), 
                     plot.symbol=list(cex=.5))) 
key <- simpleKey(levels(barley$year), space = "right") 
key$text$cex <- 1.5 
print( 
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     dotplot(variety ~ yield | site, data = barley, groups = 
year, 
             key = key, 
             xlab = "Barley Yield (bushels/acre) ", 
             aspect=0.5, layout = c(1,6), ylab=NULL) 
) 
 

 
 
However, trellis plots show their strengths especially with 
multiple explanatory variables. Here is a more complex example 
using the built-in Iris dataset: 
 
trellis.device(theme="col.whitebg") 
library(lattice) 
 
xyplot(Sepal.Length + Sepal.Width ~ Petal.Length + Petal.Width 
| Species,  
data = iris, scales = "free",  
layout = c(2, 2),  

Barley Yield (bushels/acre) 
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auto.key = list(x = .6, y = .7, corner = c(0, 0))) 

 
 
 
 
A nice example, also from the lattice library, is the Ethanol 
dataframe: 
 
EE <- equal.count(ethanol$E, 
number=9, overlap=1/4)  
 
xyplot(NOx ~ C | EE,  
data = ethanol, prepanel = 
function(x, y)  
prepanel.loess(x, y, span = 
1),  
xlab = "Compression Ratio",  
ylab = "NOx (micrograms/J)",  
panel = function(x, y) {  
panel.grid(h=-1, v= 2)  
panel.xyplot(x, y)  
panel.loess(x,y, span=1) },  
aspect = "xy") 

 
 

 
 

13 Creating pdf´s and postscript files 
 
There are options that enable you to directly create pdf or 
postscript documents from within R. For example, there´s a 
special graphics device, the pdf device, which can be called 
using the pdf() command like this: 
 
pdf("C:\\File1.pdf",horizontal=FALSE,onefile=FALSE,pointsize=1
6,family="Times",height=7.5,width=10,pagecentre=FALSE) 
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The pdf() command is just the first step in creating a pdf 
document; it just "tells" R that all further operations will 
not produce a conventional graphics output, but instead create 
a pdf file. Thus, you will need to tell R when to finish, 
using the dev.off() command. 
 
Here comes an example: 
 
A<-seq(1,20,1) #creates two vectors A and B 
B<-c(rep("A",10),rep("B",10)) 
 
pdf("C:\\File1.pdf",horizontal=FALSE,onefile=FALSE,pointsize=1
6,family="Times",height=7.5,width=10,pagecentre=FALSE) 
 
par(lwd=1,las=1,mgp=c(2.3,1,0)) 
 
plot(as.factor(B),A,col="blue") 
 
dev.off() 
 

 
If you want to do more advanced pdf graphics, you can install 
the so-called lattice package. Whith this package installed, 
you can create graphs and save them as pdf using a special 
graphics device, the so-called trellis device. 
 
First, create three vectors of values A, B and C: 
 
A<-seq(1,20,1) #creates two vectors A and B 
B<-c(rep("A",10),rep("B",10)) 
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C<-c(rep("C",5),rep("D",5),rep("E",5),rep("F",5)) 
 
Now load the lattice package, 
 
library(lattice) 
 
and start the trellis device like this: 
 
trellis.device(pdf,file="C:\\File2.pdf", 
encoding="WinAnsi",paper="special",pointsize=12,onefile=T) 
 
Now comes the plotting command: 
 
bwplot(as.factor(C)~A|as.factor(B)) 
 
In the end, the trellis device needs to be closed again, usig 
the dev.off() command: 
 
dev.off() 
 

 
 

Alternatively, you may wish to create a postscript file using 
the postscript driver inside the trellis device: 
 
library(lattice) 
trellis.device(postscript,file="C:\\File1.ps",color=F) 
bwplot(as.factor(C)~A|as.factor(B)) 
dev.off() 
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14 Creating publication-quality graphs 
 
This is an example kindly provided by Andy Hector (Zurich, 
Switzerland): 
 
First of all, we start with creating two linearly correlated 
variables: 
 
x.var.1 <- c(1:10) 
sequence.1 <- c(1:10) 
noise <- rnorm(10, 1, 0.1) 
y.var.1 <- sequence.1 + noise 
 
Now we edit some of the graphics parameters; 
 
par(mfrow=c(1,2), 
mar=c(5,4,4,2)+0.1, 
bty="l", pty="s", cex.lab=0.9, 
tck=0.02, mgp=c(2, 0.3, 0)) 
 
y.label <- expression(paste("Insect density (m"^"-2",") ")) 
x.label <- expression(paste("plant mass (g m"^"-2",") ")) 
y.lim <- c(0, 10) ; x.lim <- c(0,10) 
 
and finally start plotting: 
 
plot(y.var.1 ~ x.var.1, 
ylab=y.label, xlab=x.label, 
ylim=y.lim, xlim=x.lim) 
 
 
abline(lm(y.var.1 ~ x.var.1), lty = 2) 
main="a) Insect A" ; 
 
plot(y.var.2 ~ x.var.1, pch = 16, 
ylab=y.label, xlab=x.label, 
ylim=y.lim, xlim=x.lim) 
 
abline(lm(y.var.2 ~ x.var.1)) 
main="b) Insect B" ; 
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15 Statistical Modelling 
 

15.1 Simple tests: The t test 
 
The following example (from Altman 1991, cited in Dalgaard 
2002) tests whether the daily energy intake of 11 women 
differs significantly from a recommended value of 7725 kJ. We 
can type this small dataset in directly, inspect some of its 
properties and test it versus the expected value with the 
t.test function (if we do not specify mu the default value is 
taken as zero): 
 
intake <- c(5260, 5470, 5640, 6180, 6390, 6515, 6805, 7515, 
7515, 8230, 8770) 
 
summary(intake) 
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t.test(intake, mu=7725) 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   5260    5910    6515    6754    7515    8770  
 
t.test(intake, mu=7725) 
 
        One Sample t-test 
 
data:  intake  
t = -2.8208, df = 10, p-value = 0.01814 
alternative hypothesis: true mean is not equal to 7725  
95 percent confidence interval: 
 5986.348 7520.925  
sample estimates: 
mean of x  
 6753.636 
 
The output gives the value of t, its probability and degrees 
of freedom (which we could report in the text of a report or 
paper). 
 

15.2 Model Formulae in R 
All model formulae in R have a similar form: 
 
General form:     

 
 
   

 
Linear Models 
 
y ~ x        – Simple regression 
y ~ 1 + x       – Explicit intercept 
y ~ -1 + x       – Through the origin 
y ~ x +x^2       – Quadratic regression 
y ~ x1 + x2 + x3      – Multiple regression 
y ~ G + x1 + x2      – Parallel regressions 
y ~ G/(x1 + x2)      – Separate regressions 
sqrt(Hard) ~ Dens+Dens^2– Transformed 
 
ANOVA 
 
y~A+B    - two-way ANOVA 
y~A*B    - factorial ANOVA 
y~A*B+Error(Block/plot) - split-plot ANOVA 
y~A/B/C    - nested ANOVA 
 
More Model formulae 
 
y ~ G     – Single classification 

response variable ~ explanatory varable(s)
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y ~ A + B    – Randomized block 
y ~ B + N*P    – Factorial in blocks 
y ~ x + B + N*P   – with covariate 
y ~ . - X1    – All variables except X1 
. ~ . + A:B    – Add interaction (update) 
 
 

15.3 Regression 
 
First, we create some artificial data to illustrate a very 
simple linear regression : 
 
x.var.1 <- c(1:10) 
sequence.1 <- c(1:10) 
 
Now we add some random noise to sequence.1 : 
 
noise <- rnorm(10, 1, 0.1) 
y.var.1 <- sequence.1 + noise 
 
Finally, we create a second y variable, with all values being 
25% lower than y.var.1: 
 
y.var.2 <- y.var.1 - (0.25 * y.var.1) 
data.1 <- data.frame(x.var.1, y.var.1) 
 
Plotting these variables yields: 
 
plot(x.var.1, y.var.1,col=”blue”) 
points(x.var.1,y.var.2,col=”red”) 
 
Our linear regression analysis involves the lm() command, and 
we can plot the results using 
 
abline(lm(y.var.1 ~ x.var.1), lty = 2,col=”blue”) 
abline(lm(y.var.2 ~ x.var.1), lty = 2,col=”red”) 
 
 
Now let´s come back to our initial dataset: 
 
x <- 1:20  
 
Make y a linear function of x plus normally distributed 
deviations: 
 
y <- x+rnorm(x) 
 
Now create a plot of y against x: 
 
plot(x,y) 
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All data points seem to lie roughly along a straight line, so 
it is sensible to try to fit a linear regression through the 
data: 
 
model1<-lm(y~x) 
abline(model1) 
 
And we inspect the parameter estimates using 
 
summary(model1) 
 

15.4 Non-Linear Regression 
 
Let´s come back to our example from the course (the 
"Puromycin" dataset): 
Data on the "velocity" of an enzymatic reaction were obtained 
by Treloar (1974).  The number of counts per minute of 
radioactive product from the reaction was measured as a 
function of substrate concentration in parts per million (ppm) 
and from these counts the initial rate, or "velocity," of the 
reaction was calculated (counts/min/min). The experiment was 
conducted once with the enzyme treated with Puromycin, and 
once with the enzyme untreated. 
 
First, let´s plot the data: 
 
plot(rate ~ conc, data = Puromycin, las = 1, 
          xlab = "Substrate concentration (ppm)", 
          ylab = "Reaction velocity (counts/min/min)", 
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          pch = as.integer(Puromycin$state), 
          col = as.integer(Puromycin$state), 
          main = "Puromycin data and fitted Michaelis-Menten 
curves") 

 
 
Now, we can fit a Michaelis-Menten model to these data: 
 
     fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin, 
                subset = state == "treated", 
                start = c(Vm = 200, K = 0.05), trace = TRUE) 
     fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin, 
                subset = state == "untreated", 
                start = c(Vm = 160, K = 0.05), trace = TRUE) 
     summary(fm1) 
     summary(fm2) 
      
      
And now we can add the fitted lines to the plot: 
 
conc <- seq(0, 1.2, len = 101) 
lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1) 
lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2) 
 
And, finally, a legend: 
 
legend(0.8, 120, levels(Puromycin$state), 
col = 1:2, lty = 1:2, pch = 1:2) 
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Let´s try another example: The "trees" data set provides 
measurements of the girth, height and volume of timber in 31 
felled black cherry trees.  Note that girth is the diameter of 
the tree (in inches) measured at 4 ft 6 in above the ground. 
 
First, let´s look at different ways to plot these data: 
 
pairs(trees, panel = panel.smooth, main = "trees data") 
 
plot(Volume ~ Girth, data = trees, log = "xy") 
 
par(mai=c(10,5,5,4)) 
coplot(log(Volume) ~ log(Girth) | Height, data = trees, 
            panel = panel.smooth) 
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Now it seems that taking logs at both sides has linearized the 
data: 
 
model1<-lm(log(Volume) ~ log(Girth), data = trees) 
summary(model1) 
 
model2 <- update(model1, ~ . + log(Height), data = trees) 
summary(model2) 
 
Call: 
lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.168561 -0.048488  0.002431  0.063637  0.129223  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -6.63162    0.79979  -8.292 5.06e-09 *** 
log(Girth)   1.98265    0.07501  26.432  < 2e-16 *** 
log(Height)  1.11712    0.20444   5.464 7.81e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 0.08139 on 28 degrees of freedom 
Multiple R-Squared: 0.9777,     Adjusted R-squared: 0.9761  
F-statistic: 613.2 on 2 and 28 DF,  p-value: < 2.2e-16 
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15.5 Analysis of variance 
 
We can use our data from section “Regression” to work on: 
 
x.var.1 <- c(1:10) 
sequence.1 <- c(1:10) 
noise <- rnorm(10, 1, 0.1) 
y.var.1 <- sequence.1 + noise 
y.var.2 <- y.var.1 - (0.25 * y.var.1) 
data.1 <- data.frame(x.var.1, y.var.1) 
 
y.long <- c(y.var.1, y.var.2) ; y.long 
X <- rep(c("high" , "low"), c(10, 10)) ; X 
X <- factor(X) 
data.long <- data.frame(X, y.long) ; data.long ; 
 
What do these data look like if we plot them? 
 
plot(X, y.long) 
 
 

 
 
par(mfrow=c(1,2)) 
 
#Boxplot 
 
boxplot(y.long ~ X) 
 
#Barplot 
 
y.mean <- tapply(y.long, X, mean) 
 
barplot(y.mean, ylab="Response variable", xlab="Treatment", 
names=levels(X)) 
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So far for the graphs of this dataset.  
 
Now let´s try an easy one-way ANOVA using a new dataset. The 
response variable is continuous (growth of plants). The 
results are from an experiment to compare yields (as measured 
by dried weight of plants) obtained under a control and two 
different treatment conditions. 
 
Let´s inspect our data first: 
 
require(stats) 
boxplot(weight ~ group, data = PlantGrowth, main = 
"PlantGrowth data",ylab = "Dried weight of plants", col = 
"blue") 
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We could have also used boxplots with notches, as in: 
 
boxplot(weight ~ group, data = PlantGrowth, main = 
"PlantGrowth data",ylab = "Dried weight of plants", col = 
"lightgray", notch = TRUE, varwidth = TRUE) 
 
Now, here comes the ANOVA model: 
 
model1<-aov(weight ~ group, data = PlantGrowth) 
summary(model1) 
 
       Df  Sum Sq Mean Sq F value  Pr(>F)   
group        2  3.7663  1.8832  4.8461 0.01591 * 
Residuals   27 10.4921  0.3886                   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 
 
The next example we want to try out comes from an Agricultural 
experiment: 
 
data(InsectSprays) 
names(InsectSprays) 
InsectSprays 
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The response variable is counts of insects in agricultural 
experimental units treated with different insecticides. 
 
As usual, we start by plotting and inspecting the data: 
 

require(stats) 
     boxplot(count ~ spray, data = InsectSprays, 
             xlab = "Type of spray", ylab = "Insect count", 

   main = "InsectSprays data", varwidth = TRUE,  
   col = "lightgray") 

 
 

 
 
Now, let´s construct our first ANOVA model: 
 
     fm1 <- aov(count ~ spray, data = InsectSprays) 
     summary(fm1) 
     par(mfrow = c(2,2)      
     plot(fm1) 
 
Let´s try the same analysis using a transformation of the 
response: 
 
     fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays) 
     summary(fm2) 
     plot(fm2) 
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15.6 Time Series 
 
data(lynx) 
ts.plot(lynx) 
 

 
plot(acf(lynx)) 
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15.7 A Generalized Linear Model (from Bill Venables) 
 
Generalized linear models are an own class of models where you 
can specify what error structure your data have. Generalized 
linear models don´t have to be linear; they have to be linear 
in their parameters. In general, such a model consists of 
three parts: 
 
- the linear predictor 
- the link function and 
- the Error Structure 
 
The linear predictor is just another form of a regression 
equation (y=a+bx), namely 
 

∑= xßy , where  
 
-y is the vector of individual data points (observations) 
-the xs are the covariates in the model 
-the ßs are the parameters or the model (whose values are to 
be estimated) 
 
The link function links the linear predictor to the 
observations:  
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∑= xßη  is the linear predictor; ∑= xßη  
The link function is then just the reciprocal of y=f(η ). 
 
The Error structure refers to the kind of errors associated 
with our data, e.g.  
- Poisson Errors for count data 
- Binomial Errors for proportion data 
- Gamma Errors for data on time-to-death 
 
Specific Error Structures are often associated with so-called 
canonical link functions: 
- Normal Errors: Identity link 
- Poisson Errors: Log link 
- Gamma Errors: Reciprocal link 
- Binomial Errors: Logit Link 
 
So, let´s create again a dataset: 
 
Budworms <- data.frame(Logdose = rep(0:5, 2), 
    Sex = factor(rep(c("M", "F"), each = 6)), 
    Dead = c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)) 
 
Obviously, these are going to be proportion data (as budowrms 
are either "dead" or "alive". 
 
Budworms$Alive <- 20 - Budworms$Dead 
 
To plot these data, we need the Lattice package: 
library(lattice) 
 
xyplot(Dead/20 ~ I(2^Logdose), Budworms, groups = Sex, panel = 
panel.superpose, xlab = "Dose", ylab = "Fraction 
dead",auto.key=T , type="b") 
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And here comes the generalized linear model, using glm(): 
 
bud.1 <- glm(cbind(Dead, Alive) ~ Sex*Logdose, binomial, 
Budworms, trace=T, eps=1.0e-9) 
 
summary(bud.1) 
 
"binomial" indicates we´re using binomial errors with a logit 
link function. Let´s see if we can simplify this model: 
 
bud.0 <- update(bud.1, .~.-Sex:Logdose) 
 
Finally, we compare both models using "anova()": 
anova(bud.0, bud.1, test="Chisq") 
 

16 Generating Experimental Designs 
 
There are some very useful built-in functions in R that allow 
you to generate layouts for experimental designs. 
 
The gl() command generates levels of a factor (which is very 
useful for factorial designs): 
 
gl(2, 8, label = c("Control", "Treatment")) 
  
[1] Control   Control   Control   Control   Control   Control   Control   
[8] Control   Treatment Treatment Treatment Treatment Treatment Treatment 
[15] Treatment Treatment 
Levels: Control Treatment 
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