
 1

Christoph Scherber

An introduction to
statistical data
analysis using R
Basic operations, graphics and modelling using R

Christoph Scherber
09.10.2007

 2

1 What is R?

"The history of R begins at AT&T Bell laboratories, when they
decided to develop a programming language designed to do
statistical analysis - the result was the S language. S proved
very popular with statisticians and led to a proposal to
market it as a commercial product - after the addition of an
extensive graphical user interface (GUI) to make it more user-
friendly - as S-Plus. Ross Ihaka and Robert Gentleman from the
University of Auckland in New Zealand decided to write a pared
down version of S for use in teaching. Following in the line
of a series of minimalist computer program names (like C), the
two R's named their teaching version of S ”R”. The R source
code was released in 1995 under a General Public License
(GPL). The development of R is now guided by an international
development team and R is now easily downloaded from the
internet from a network of CRAN (Comprehensive R Archive
Network) mirror sites." (citation: Andy Hector,Zurich)

If you haven´t downloaded the R software package yet, you can
easily get it from

http://www.r-project.org

Where you can also find lots of other interesting background
information.

 3

The corresponding download page is at

http://cran.uk.r-project.org/

Simply click on "Precompiled Binary Distributions" and then on
the version supporting your Operating System (e.g. Microsoft
Windows, Linux or Mac OS). Then download the "base" package.

Unpack the file and install R to a desired path (e.g. "C:").
Load the R Console, and you´re ready to experience R!

 4

2 Contents

1 What is R? .. 2
2 Contents .. 4
3 Why use R? .. 5
4 Need Help? ... 6
5 Contributed Packages ... 7
6 The commands and the scripts window ... 7

6.1 The commands window ... 7
6.2 The Script Window .. 8
6.3 Saving your work ... 9
6.4 The working directory .. 10

7 Importing and exporting data ... 10
7.1 Importing from Microsoft Excel .. 10
7.2 Importing from a text file ... 11
7.3 Exporting data to a text file .. 12

8 Typing in Data .. 13
9 An introductory session .. 13
10 Working with large datasets ... 17
11 Sorting and summarizing data .. 19
12 Creating high-level plots in R .. 21

12.1 Exploratory Data Analysis ... 21
12.2 Plotting a Histogram ... 21
12.3 A simple Scatterplot ... 22
12.4 Plotting multivariate data ... 23
12.5 Line plot ... 25
12.6 Boxplot ... 26
12.7 Three-dimensional plots ... 26
12.8 Piecharts ... 30
12.9 Trellis Scatterplots .. 31

13 Creating pdf´s and postscript files .. 34
14 Creating publication-quality graphs ... 37
15 Statistical Modelling .. 38

15.1 Simple tests: The t test ... 38
15.2 Model Formulae in R ... 39
15.3 Regression .. 40
15.4 Non-Linear Regression .. 41
15.5 Analysis of variance ... 45
15.6 Time Series ... 49
15.7 A Generalized Linear Model (from Bill Venables) ... 50

16 Generating Experimental Designs .. 52
INDEX ... 53
17 Author´s Address .. 56

 5

3 Why use R?

If you like point-and-click adventures, you´re going to be
fully satisfied with “big shots”, such as SPSS or Statistica.
But there may come a time where you will notice that you´re
going to have to start programming – even in SPSS.

Have you ever tried a split-plot analysis of variance in SPSS?
Well, you should, because eventually you´ll find out that it
is not possible without switching to the syntax window.

Or, have you tried installing the most recent releases of S-
Plus or SPSS? They are all server-based, watching with eagle´s
eyes on how many different computers you try to install it.

R is different. Not only that it´s free, it also offers state-
of-the-art statistical data analysis, high-level graphics, and
the greatest flexibility you could ever dream of. What´s more,
it will not only work with Windows-based systems, but also on
Apple Mac OS and Linux.

Of course, you are going to miss the menus. However, the
problem with menus is that they are inefficient for repetitive
tasks. The good thing about self-written syntax is: Once
you've finished one project and moved onto a new one, you will
soon find that you will already have a text file of an old
analysis that can be edited and adapted for the new dataset.

Now let´s move on to see what this all means.

 6

4 Need Help?

For help at any time, simply type ? or help.search("subject")
where "subject" is the area you´re interested in; for example,
if you want to know how to do an analysis of variance, simply
type

help.search("analysis of variance")

Or, if you already know the command you´re interested in, just
use the "?" command. Let´s say you want to know how to use
"help.search":

?help.search

This gives you almost everything you need to know about how to
use R help.

 7

5 Contributed Packages

If you install R for the first time, most things you might
want to do will be possible – such as basic statistical
operations, graphics and so on.

Yet, you may come to a point where you wish to do more than
just basic things. You may want to do something like

- Import Excel files
- Use tree models
- Use mixed effects models
- Do conditioned trellis graphics
- Analyze spatial data
- Create interactive plots,

and so on. Whenever you want to do things like those mentioned
above, you are lucky – because one of the main strengths of R
is that there are loads of so-called "contributed packages"
allowing you to install "extra components" for special
purposes. Nothing is easier than installing those contributed
packages – and in case you want to learn more, just try the
following:

If you want to know what packages are available in principle,
use
library()

For more detailed information on an installed package, just
type (for example)

library(help="nlme")
(gives an overview of the functions contained in the "nlme"
package, with which you can do non-linear and linear mixed-
effects models)

packageDescription("nlme")
(shows the general package description and authorship)

6 The commands and the scripts window

When you start R for the first time, you will find that there
are two basic possibilities to tell the program what to do:

6.1 The commands window
This is where you usually type in what you want R to do, using
your keyboard.
For those of you who haven´t tried out a programming language
(such as Pascal or Basic) yet: The command line basically
works like a text editor, but with the big difference that

 8

what you type is "translated" to the computer, and eventually
it will result in the computer "doing something" for you.

For example, if you type

Hello
The computer´s "answer" will be:

Error: Object "Hello" not found

So you should try to type in something more meaningful, such
as

print("Hello")

Now the computer knows what you want it to do. You tell it to
print the text called "Hello" to the screen:

[1] "Hello"

6.2 The Script Window

Go to the "File" Toolbar (or press "Ctrl"+"N") to create a new
script window. As you will see, a script window opens. Here,
you can basically do the same as described for the commands
window, but with the additional feature of having more
flexibility.

Well, you won´t find out unless you try it out, so here is
some R code to start with:

x<-seq(-10,10,0.1)
y<-exp(-0.5*x)
plot(x,y,type="l",col="blue")

Using the commands window is made even more convenient
by a special feature: When you use your „up” and „down”
arrow keys, you can access whatever you´ve typed before.
Just try it out!

After typing the code to the script window,
- mark the text you want to run using your mouse or
keyboard
- press „Ctrl”+”R” to run the script
- and just see what happens

 9

Don´t worry too much about the code behind it (you´ll learn
this later). What we have done is plotting a negative
exponential function using blue line colours.

6.3 Saving your work

Whenever you want to save some text you´ve typed, some graph
you´ve produced, and so on, just use your mouse cursor and
open the "File" scroll-down menu. You should be able to save
your file(s) to text or graphics format depending on what kind
of file you have produced.
The Graphical User Interface (GUI) also offers you to save any
graph you produced by right-clicking with your mouse.

But be prepared that even much more "magical" things are
possible with R. For example, you can directly open Windows
explorer from within R using the following command:

system("explorer C:\\")

Or the MS-DOS commands window using

-10 -5 0 5 10

0
50

10
0

15
0

x

y

Note, too, that the whole code you´ve run also appears
in the „Commands Window”. Thus, you can now switch
between both windows, depending on what you prefer to
do.

 10

system("cmd")

If you wish to save data to a text file (for import into
Excel), just use the write.table() command.

Example:
Create a dataframe consisting of two variables A and B:

A<-seq(1,10,1) #creates two vectors A and B
B<-rep("B",10)
df<-data.frame(A,B) #creates a data frame

Now export these data to a text file:

write.table(df,"C:\\File1.txt") #saves the frame to a file

6.4 The working directory

Another important thing that you may wish to change is the
working directory. This is the default directory into which R
files, history files etc. are saved.

First, it is useful to assess the current state of the working
directory. This is done using

getwd()

For example, on my personal computer, this command gives

[1] "E:/Programs/R/R-2.5.1"

You can set the working directory by typing

setwd("C:\\data\\examples")

7 Importing and exporting data

7.1 Importing from Microsoft Excel

There are several possibilities for importing Excel files. All
methods require the separate installation of specific data
import-export libraries.
The at current most convenient way is to use the new
xlsReadWrite package. The syntax to be used is:

read.xls(file,
 colNames = TRUE,
 sheet = 1,

 11

 type = "data.frame",
 from = 1,
 rowNames = NA, colClasses = NA, checkNames = TRUE,
 dateTimeAs = "numeric",
 stringsAsFactors = default.stringsAsFactors())

For example, a straightforward way of importing an Excel file
called "sample.xls" might be:

sample.data<-read.xls("C:\\sample.xls",sheet=1,colNames=T)

A more old-fashioned way of importing Excel files is to
establish a connection using a package called "RODBC".

Loading the package is most convenient using the command
"library()"

library(RODBC)

Now the corresponding excel file is opened as follows:

z<-odbcConnectExcel("C:\\sample.xls")
frame<-sqlFetch(z,"Sheet1") #or any other name of the sheet
close(z)

The attach() command connects the data frame to the column
titles given in the first row (if header=T)

attach(frame)

Note that all import-export filters at current to not support
XLSX files of Microsoft Office 2007.

Note also that it can be dangerous to trust too much in simple
Excel import-export filters. The proper way to deal with data
in R is to work with tab-delimited text files. They use up far
less space, and they will be readable even in 150 years from
now (while Excel versions will always change every couple of
years)

7.2 Importing from a text file

Rather than using Excel files, you should try to always import
your datasets from text files.

 12

Text files have several advantages over Excel files,
including:

• small size
• every computer program can read them
• they can be edited using the Windows notepad, or any

other text editor
• they force the user to have a very clear idea of the

structure of a dataframe

The standard textbook method is:

frame<-read.table("C:\\sample.txt,header=T)
attach(frame)

The attach() command connects the data frame to the column
titles given in the first row (if header=T)

You will be likely to fail if you only use this basic command.
If your dataset contains, say, empty cells or missing values,
you should always use something like the command written
below.

frame<-read.table("C:\\sample.txt,header=T,
na.strings="NA",sep="",dec=".",fill=T)
attach(frame)

sep gives the column separator; "" is for blank space
na.strings indicates how missing values are labelled in the
file
dec indicates the sign used for decimal point ("." or ",")
fill=T columns with unequal length are filled with blank cells

7.3 Exporting data to a text file

This is as easy as using read.table.

write.table(x, file = "C:\\sample.txt",sep = " ", na = "NA",
dec = ".")

see the specifications for read.table.

Remember that you should always adjust the commands to your
own needs! Simply copying what I have written here will of
course not always work - depending on the type of dataset you
are dealing with.

For example, if your Excel version works with decimal commas
instead of decimal dots, you should use sep="\t" and dec=","

 13

8 Typing in Data

The "gets" assignment "<-" is probably the most important
thing you will need to know when using R.

"x <- 1" reads "1 is assigned to x"
 or, even easier to say, "x gets 1"

Note that in new versions of R, you can also write

x = 1

but be careful not to confuse such statements with logical
operators. For example,

x[x=1] gives those values of x that have the value 1.

Use the scan() command to read in data from the keyboard;
terminate input by pressing "return" two times

var<-scan()

The c() command produces a vector (concatenate) consisting of
the values given in brackets and separated by commas.

var<-c(1,2,3,....)

The rep() command repeats a value (or string) n times

var<-rep(value,n)

The seq() command produces a sequence from the start value to
the end value with steps of size step.

var<-seq(start,end,step)

9 An introductory session

To get a first impression on what you can do with R, let´s
create an artificial dataset consisting of just two variables,
x and y. While the x values are fixed, we want the y values to
be dependent on x, but with some "random component" of
variation ("scatter").

Make x = (1,2,3,...,20):

x <- 1:20

 14

Make y a linear function of x plus normally distributed
deviations:

y <- x+rnorm(x)

Now create a plot of y against x:

plot(x,y)

This is a good time to get a feeling for R´s Graphical User
Interface (GUI).

Alternatively, you can set the options from the command line
by typing

options(graphics.record=TRUE)

Now, returning to our graph: All data points seem to lie
roughly along a straight line, so it is sensible to try to fit
a linear regression through the data:

5 10 15 20

5
10

15
20

x

y

Be sure to go to the „History” Scroll-Down menu and check
the „Recording” item. This makes handling and saving
graph sheets much more convenient!

You should try out the „Page Up” and „Page Down” keys and
see how you can change between different graph sheets you
have produced in your latest R session.

 15

model1<-lm(y~x)
abline(model1)

summary(model1) gives the following output:

Call:
lm(formula = y ~ x)

Residuals:
 Min 1Q Median 3Q Max
-1.8794 -0.4967 0.1542 0.5370 1.4382

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.33633 0.46571 0.722 0.479
x 0.98716 0.03888 25.392 1.51e-15 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.003 on 18 degrees of freedom
Multiple R-Squared: 0.9728, Adjusted R-squared: 0.9713
F-statistic: 644.8 on 1 and 18 DF, p-value: 1.510e-15

This shows the values for the coefficients (the intercept and
the slope) plus their standard errors. We see, that the
intercept is about 0.3 (compare this to the graph!) and the
slope is roughly 1 (as expected). The multiple R² value is
0.97, which means that our regression line explains about 97%
of the data points.

5 10 15 20

5
10

15
20

x

y

 16

 17

10 Working with large datasets

R has some major advantages over many other statistical
software packages (and spreadsheet-based applications such as
MS Excel).
So let us create a sample dataset with hundred columns and
thousand rows to see the ´power´ of R!

x<-rnorm(100*1000)
dim(x)<-c(1000,100)
fix(x)

- "rnorm" samples from a standard normal distribution 100*1000
times
- "dim" tells R that x shall be divided into 1000 rows and 100
columns
- "fix" lets us inspect the newly created dataset in a
spreadsheet-like manner

 col1 col2 col3 col4
 [1,] -1.24650940 -1.1467091 -0.74042771 -0.005724874
 [2,] -0.01967889 -0.2151414 0.09073095 0.425347667
 [3,] 0.89854828 -0.1263240 -0.77334287 0.807388085
 [4,] -0.92055640 -2.4847047 -0.04134650 -0.309679654
 [5,] 0.06183694 0.7479552 0.85152309 -2.000672747
 [6,] -0.34801913 -0.7275596 -0.96744469 -1.198995246
 [7,] 0.23341553 0.3177949 -0.23907289 -1.804130980
 [8,] -1.38771819 0.7156175 0.28950161 0.549642668
 [9,] 0.91197232 0.7816294 -0.68355235 0.215647213
[10,] -0.21823882 0.3123124 -0.19459990 -0.672982445

This shows the principal arrangements of "spreadsheets" (data
frames, matrices) in R:

The rows and columns are addressed using pairs of x and y
values of the form [row,column]. Thus, the cell in the first
row of column 1 would be addressed as x[1,1]:

> x[1,1]
[1] -1.246509

The cell in the 7th row of column 4 would be addressed as
x[7,4]:

> x[7,4]
[1] -1.804131

So this looks O.K.; Let´s now calculate the sum of every row
(i.e., thousand row sums):

 18

rowSums(x)

Similarly, we can do this for all the 100 columns:

colSums(x)

Now for the tricky part: Why don´t we create a hundred graphs
from this dataset? Well, in any point-and-click software
package, this would mean at least one day of work (selecting
any one column and plotting it against any other!) – in R it´s
just that easy:

par(ask=T)

This tells the graphics device to let you press "return" to
see the next graph. And then:

for (i in 1:99) plot(x[,i],x[,i+1]

That´s all we need! Well, to make the graphs look a bit
better, we would ideally want to have each x and y axis
labelled, so the full call to R could look like:

for (i in 1:99) plot(x[,i],x[,i+1],
xlab=c("x",i),ylab=c("x",i+1),
main=c("The ",i,"th plot")

These two lines tell R to plot each column (i) in the
dataframe against each next column (i+1), so that we end up
with 99 plots in total. The code reads as follows:

for (i in 1:99).......do the following thing 99 times:
plot..................create a new plot with
x[,i].................the i´th column against
x[,i+1]...............the (i+1)th column
xlab..................label the x axis with:
c("x",i).............."x" and the column number (i) and
ylab..................label the y axis with:
c("x",i+1)............"x" and the next column number (i+1)
main..................give the graph a main title which is
c("The ",i,"th plot").numbered from 1 to i

Now let´s take this a step further and add regression lines
and correlation coefficients to each of the 99 plots:

for (i in 1:99)
{ correl<-cor(x[,i],x[,i+1])
plot(x[,i],x[,i+1],xlab=c("x",i),ylab=c("x",i+1),
main=c("Correlation:",correl))
abline(lsfit(x[,i],x[,i+1]))

 19

}

The code now reads as follows:

for (i in 1:99).......do the following thing 99 times:
correl<-..............create a variable called "correl"
cor(x[,i],x[,i+1])....calculate the correlation coefficient
plot..................plot the same thing as before
abline................create a line based on the formula:
lsfit(x[,i],x[,i+1])..a regression of x[,i] against x[,i+1]

11 Sorting and summarizing data

Let´s now come back to an easier dataset; we make it very
small so that everything is quick and easy to see:

x<-c("c","a","b")
y<-c(10,13,20)
z<-c(5,10,1)
w<-cbind(x,y,z)

w
 x y z
[1,] "c" "10" "5"
[2,] "a" "13" "10"

 20

[3,] "b" "20" "1"

There are three columns (x,y and z) and three rows. Column x
contains a categorical variable with the levels "a", "b" and
"c". Y and z are numerical. We now want to sort the data in
this small data frame. We can do this individually (i.e.
column-wise) using sort:

sort(w[,1])
[1] "a" "b" "c"

But ideally we want the whole dataframe w to be sorted, e.g.
after column 1:

w[order(w[,1]),]
 x y z
[1,] "a" "13" "10"
[2,] "b" "20" "1"
[3,] "c" "10" "5"

Additionally, we might want to have some quantitative
summaries, such as

table(w)
w
 1 10 13 20 5 a b c
 1 2 1 1 1 1 1 1

which shows how often elements occur in the dataframe; or

summary(w)
 x y z
 a:1 10:1 1 :1
 b:1 13:1 10:1
 c:1 20:1 5 :1

which gives a similar output, but column-wise.

We can also calculate mean values for every level of x:

tapply(y,x,mean)

a b c
13 20 10

Which reads: "Apply the function ´mean´ to y for every value
of x."

 21

12 Creating high-level plots in R

You can find out about the full capabilities of R´s graphics
system by typing

demo(graphics)

which will create several built-in demo graphs.

12.1 Exploratory Data Analysis

So let´s try out the full capabilities of R, using datasets
provided by the Software Developers.

All available datasets can be accessed by typing

data()

Note: This function is only available in R, in S-Plus you´d
have to type ?example

12.2 Plotting a Histogram

We start with a sample dataset on tree growth.

attach(trees)
names(trees)

[1] "Girth" "Height"
[3] "Volume"

hist(Height)

We could also improve the output of our histogram, using

hist(Height)

hist(Height, breaks=5,ylim=c(0, 12),col="grey")

Let´s further assume we want to see if our data are normally
distributed:

First, we need to find out the minimum and the maximum of
Height:

min(Height)
[1] 63
max(Height)

 22

[1] 87

hist(Height,breaks=63:87,col="grey")

Now we can draw the corresponding normal curve using lines()
and a call to the routine dnorm() to plot the curve. This
involves several calculations:

First, we have to create a vector of "artificial" x values for
our normal curve. We do this by typing

x.values<- seq(63,87,length=31)

Now we create a corresponding vector of y values, which is
going to be the height of our normal curve. The parameters we
supply to the dnorm() function ("d" stands for "density") are:

- the number of trees that were measured: length(Height)
- the probability density for each tree, which is going to be
 a normal distribution with mean mean(Height) and standard
 deviation sd(Height)

We stick this all together using

y.values<-
length(Height)*
dnorm(seq(63,87,length=31), mean(Height), sd(Height))

Finally, we say:

lines(x.values,y.values)

And it´s done!

12.3 A simple Scatterplot

Let´s use our trees dataset again. There are several different
ways of producing scatterplots, which will be shown step by
step.

First, let´s set up a graphics window that is split into four
parts, using the par() command.

par(mfrow=c(2, 2))

This says: Set up a 2x2 panel screen (using mfrow); if you´d
like, you could also increase the font size, using cex():

 23

par(mfrow=c(2, 2), cex=0.6)

So let´s look at the data now:

plot(Height, type="p") #gives only single points
plot(Height, type="l") #gives invisible points joint by lines
plot(Height, type="b") #gives both points and lines
plot(Height, type="h") #gives the height of the y values

plot(Height, type="l", col="blue") #changes the color
plot(Height, type="l", col="red", lwd=3) #changes color&width
plot(Height,log="x", type="l") #changes the scale of x axis
plot(Height, type="l", lty="dotted") #line type is dotted now

12.4 Plotting multivariate data

Let´s use the Iris dataset. Here it is:

fix(iris)

Sepal.Length Sepal.Width (...) and so on
1 5.1 3.5
2 4.9 3.0
3 4.7 3.2
4 4.6 3.1
5 5.0 3.6
6 5.4 3.9

We want to see how the following variables:

-sepal length,
-sepal width,
-petal length and
-petal width

are related to one another. We first increase font size using
par():

par(cex=0.6)

Now the pairs() command does the trick for us. We are only
going to look at the first four columns in the dataset, using
an index from 1 to 4:

pairs(iris[1:4])

It is also possible to add scatterplot smoothers quickly to
each of the panels:

 24

pairs(iris[1:4],panel=panel.smooth)

Another possibility to visualize multivariate data is using
the coplot() command:

#Data:

y.variable <- c(1:20)
x.variable <- c(21:40)
f <- rep(c("level.1", "level.2", "level.3", "level.4"), c(5,
5, 5, 5))
FACTOR <- factor(f)

data.4.coplot <-data.frame(x.variable, y.variable, FACTOR) ;
data.4.coplot

Now we can plot y.variable as a function of x.variable
conditioned by our categorical variable called FACTOR:

coplot(y.variable ~ x.variable | FACTOR)

Sepal.Length

2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

2.0

2.5

3.0

3.5

4.0

Sepal.Width

Petal.Length

1

2

3

4

5

6

7

4.5 5.5 6.5 7.5

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7

Petal.Width

 25

The panels in coplot() are read from bottom left via bottom
right to top left and top right.

12.5 Line plot

x <- c(0.5, 2, 4, 8, 12, 16)
y1 <- c(1, 1.3, 1.9, 3.4, 3.9, 4.8)
y2 <- c(4, .8, .5, .45, .4, .3)
par(las=1, mar=c(4, 4, 2, 4))
plot.new()

plot.window(range(x), c(0, 6))

lines(x, y1)
lines(x, y2)
points(x, y1, pch=16, cex=2)
points(x, y2, pch=21, bg="white", cex=2)

par(col="grey50", fg="grey50", col.axis="grey50")
axis(1, at=seq(0, 16, 4))
axis(2, at=seq(0, 6, 2))
axis(4, at=seq(0, 6, 2))

box(bty="u")
mtext("Travel Time (s)", side=1, line=2, cex=0.8)
mtext("Responses per Travel", side=2, line=2, las=0, cex=0.8)
mtext("Responses per Second", side=4, line=2, las=0, cex=0.8)
text(4, 5, "Bird 131")

5

10

15

20

25 30 35 40

25 30 35 40

5

10

15

20

x.variable

able

level.1

level.2

level.3

level.4

Given : FACTOR

 26

par(mar=c(5.1, 4.1, 4.1, 2.1), col="black", fg="black",
col.axis="black")

12.6 Boxplot

par(mar=c(3, 4.1, 2, 0))
 boxplot(len ~ dose, data = ToothGrowth,
 boxwex = 0.25, at = 1:3 - 0.2,
 subset= supp == "VC", col="grey90",
 xlab="",
 ylab="tooth length", ylim=c(0,35))
 mtext("Vitamin C dose mg", side=1, line=2.5, cex=0.8)
 boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
 boxwex = 0.25, at = 1:3 + 0.2,
 subset= supp == "OJ", col="grey70")
 legend(1.5, 9, c("Ascorbic acid", "Orange juice"),
bty="n",
 fill = c("grey90", "grey70"))
par(mar=c(5.1, 4.1, 4.1, 2.1))

12.7 Three-dimensional plots

Here is an example from the Agricultural University of
Copenhagen (Denmark):

0 4 8 12 16

0

2

4

6

0

2

4

6

Travel Time (s)

R
es

po
ns

es
 p

er
 T

ra
ve

l

R
es

po
ns

es
 p

er
 S

ec
on

d

Bird 131

0.5 1 2

0
5

10
15

20
25

30
35

to
ot

h
le

ng
th

0.5 1 2

0
5

10
15

20
25

30
35

Ascorbic acid
Orange juice

 27

mydata <- data.frame(x = runif(20, 0, 10), y = runif(20, 10,
20), zinc = rnorm(20, 4, 2))

mydata[1:15,]

library(lattice)

cloud(zinc~x*y,data=mydata,scales=list(arrows=F))

More complicated surfaces can be plotted using the wireframe
function, which gives complex three-dimensional
representations of data. The example below comes from Deepayan
Sarkar, the programmer of the lattice library:

First, we use expand.grid () to create the source dataset.

surf <-expand.grid(x = seq(-pi, pi, length = 50),
 y = seq(-pi, pi, length = 50))

Now the z variable (plotted perpendicularly to the x and y
plane) shall be a complex sine function of x and y:

surf$z <-
 with(surf, {
 d <- 3 * sqrt(x^2 + y^2)
 exp(-0.02 * d^2) * sin(d)
 })

g=surf

wireframe(z ~ x * y, g, aspect = c(1, .5),
 scales = list(arrows = FALSE))

 28

Now let us assume you would wish to add scatter points to this
plot.

To modify this plot, write an own panel function using
panel.3d.wireframe:

wireframe(z ~ x * y, g, aspect = c(1, .5),
 scales = list(arrows = FALSE),
 panel.3d.wireframe = function(...) {
 panel.3dwire(...)
 })

...and add points using 3dscatter; The trick is to make
liberal use of the ... argument, only naming arguments that
you need to work with or override. So our first try might be
to write an explicit but minimal panel.3d.wireframe function
that does nothing new:

wireframe(z ~ x * y, g, aspect = c(1, .5),
 scales = list(arrows = FALSE),
 panel.3d.wireframe = function(x, y, z, ...) {
 panel.3dwire(x = x, y = y, z = z, ...)
 })

Now let's add a few points using panel.3dscatter:

wireframe(z ~ x * y, g, aspect = c(1, .5),

 scales = list(arrows = FALSE),
 panel.3d.wireframe = function(x, y, z, ...) {
 panel.3dwire(x = x, y = y, z = z, ...)
 panel.3dscatter(x = runif(10, -0.5, 0.5),
 y = runif(10, -0.5, 0.5),
 z = runif(10, -0.25, 0.25),

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

-0.5

0.0

0.5

x
y

z

 29

 ...)
 })

Now usually the points to add to such a 3D plot will not be on
the transformed 3D scale (they almost always will be on some
original scale), whereas panel.3dwire wants data in a
different (linearly shifted and scaled) scale suitable for 3-D
transformations.

In practice, you would have to make the conversion from data
scale to transformed scale yourself, and that's where the
*lim and *lim.scaled arguments come in. They contain the range
of the data cube in the original and transformed scales
respectively.

So let's say the points you want to add (in the original
scale) are:

pts <-
 data.frame(x = runif(10, -pi, pi),
 y = runif(10, -pi, pi),
 z = runif(10, -1, 1))

Then the suitable transformation can be done as follows:

wireframe(z ~ x * y, g, aspect = c(1, .5),
 scales = list(arrows = FALSE),
 pts = pts,
 panel.3d.wireframe =
 function(x, y, z,
 xlim, ylim, zlim,
 xlim.scaled, ylim.scaled, zlim.scaled,
 pts,
 ...) {
 panel.3dwire(x = x, y = y, z = z,
 xlim = xlim,
 ylim = ylim,
 zlim = zlim,
 xlim.scaled = xlim.scaled,
 ylim.scaled = ylim.scaled,
 zlim.scaled = zlim.scaled,
 ...)
 xx <-
 xlim.scaled[1] + diff(xlim.scaled) *
 (pts$x - xlim[1]) / diff(xlim)
 yy <-
 ylim.scaled[1] + diff(ylim.scaled) *
 (pts$y - ylim[1]) / diff(ylim)
 zz <-
 zlim.scaled[1] + diff(zlim.scaled) *
 (pts$z - zlim[1]) / diff(zlim)

 30

 panel.3dscatter(x = xx,
 y = yy,
 z = zz,
 xlim = xlim,
 ylim = ylim,
 zlim = zlim,
 xlim.scaled = xlim.scaled,
 ylim.scaled = ylim.scaled,
 zlim.scaled = zlim.scaled,
 ...)
 })

The resulting plot now contains the original wireframe, plus
some added datapoints floating around in 3D space:

12.8 Piecharts

Here is an example of a piechart from the pie() help page:

par(mar=c(0, 2, 1, 2), xpd=FALSE, cex=2)
 pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
 names(pie.sales) <- c("Blueberry", "Cherry",
 "Apple", "Boston Cream", "Other", "Vanilla")
 pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

-0.5

0.0

0.5

x
y

z

 31

12.9 Trellis Scatterplots

Trellis plots offer several possibilities to visualize
multidimensional data. Specifically, you can plot the response
variable against several numerical and categorical explanatory
variables at the same time.

Trellis plots are highly effective, but they involve different
sets of commands compared with standard graphics.

To get a first feeling for how trellis graphics work, here is
a comparison between xyplot() and plot():

plot(as.numeric(InsectSprays$spray),InsectSprays$count)
xyplot(count~spray,data=InsectSprays)

Conventional plot() xyplot() version

Blueberry

Cherry

Apple

Boston Cream
Other

Vanilla

1 2 3 4 5 6

0
5

10
15

20
25

as.numeric(InsectSprays$spray)

In
se

ct
S

pr
ay

s$
co

un
t

spray

co
un

t

0

5

10

15

20

25

A B C D E F

 32

So, in general, the most important difference between both
plot types is the specification of (x,y) vs. (y~x).

However, xyplots can become quite complex once you want to
change things such as font sizes etc.; the command
"trellis.par.get" lists all the components of a trellis plot
that you might want to change:

trellis.par.get()

The list of parameters is huge; to change just a few of them,
we type

trellis.par.set(
list(fontsize=list(text=14),
par.xlab.text=list(cex=1.5),
par.ylab.text=list(cex=1.5),
par.sub.text=list(cex=1.5),
add.text=list(cex=1.5),
plot.symbol=list(pch=16,cex=1.3)))

And then re-run the xyplot command:

xyplot(count~spray,InsectSprays,scales=list(tck=-1,cex=1.5))

The barley dataset, included in the lattice library, serves as
a further example:

library(lattice)
trellis.par.set(theme = canonical.theme("postscript",
col=FALSE))
trellis.par.set(list(fontsize=list(text=6),
 par.xlab.text=list(cex=1.5),
 add.text=list(cex=1.5),
 plot.symbol=list(cex=.5)))
key <- simpleKey(levels(barley$year), space = "right")
key$text$cex <- 1.5
print(

spray

co
un

t

0

5

10

15

20

25

A B C D E F

 33

 dotplot(variety ~ yield | site, data = barley, groups =
year,
 key = key,
 xlab = "Barley Yield (bushels/acre) ",
 aspect=0.5, layout = c(1,6), ylab=NULL)
)

However, trellis plots show their strengths especially with
multiple explanatory variables. Here is a more complex example
using the built-in Iris dataset:

trellis.device(theme="col.whitebg")
library(lattice)

xyplot(Sepal.Length + Sepal.Width ~ Petal.Length + Petal.Width
| Species,
data = iris, scales = "free",
layout = c(2, 2),

Barley Yield (bushels/acre)

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland

Glabron
No. 457

Wisconsin No. 38
Trebi

20 30 40 50 60

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

University Farm
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Crookston
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Waseca

1932
1931

 34

auto.key = list(x = .6, y = .7, corner = c(0, 0)))

A nice example, also from the lattice library, is the Ethanol
dataframe:

EE <- equal.count(ethanol$E,
number=9, overlap=1/4)

xyplot(NOx ~ C | EE,
data = ethanol, prepanel =
function(x, y)
prepanel.loess(x, y, span =
1),
xlab = "Compression Ratio",
ylab = "NOx (micrograms/J)",
panel = function(x, y) {
panel.grid(h=-1, v= 2)
panel.xyplot(x, y)
panel.loess(x,y, span=1) },
aspect = "xy")

13 Creating pdf´s and postscript files

There are options that enable you to directly create pdf or
postscript documents from within R. For example, there´s a
special graphics device, the pdf device, which can be called
using the pdf() command like this:

pdf("C:\\File1.pdf",horizontal=FALSE,onefile=FALSE,pointsize=1
6,family="Times",height=7.5,width=10,pagecentre=FALSE)

Petal.Length + Petal.Width

S
ep

al
.L

en
gt

h
+

S
ep

al
.W

id
th

3
4

5

0.5 1.0 1.5

setosa

2
3

4
5

6
7

1 2 3 4 5

versicolor
2

3
4

5
6

7
8

2 3 4 5 6 7

virginica

Sepal.Length * Petal.Length
Sepal.Length * Petal.Width
Sepal.Width * Petal.Length
Sepal.Width * Petal.Width

Compression Ratio

N
O

x
(m

ic
ro

gr
am

s/
J)

1

2

3

4

810 14 18

EE

810 14 18

EE

810 14 18

EE

810 14 18

EE

810 14 18

EE

810 14 18

EE

810 14 18

EE

810 14 18

EE

810 14 18

EE

 35

The pdf() command is just the first step in creating a pdf
document; it just "tells" R that all further operations will
not produce a conventional graphics output, but instead create
a pdf file. Thus, you will need to tell R when to finish,
using the dev.off() command.

Here comes an example:

A<-seq(1,20,1) #creates two vectors A and B
B<-c(rep("A",10),rep("B",10))

pdf("C:\\File1.pdf",horizontal=FALSE,onefile=FALSE,pointsize=1
6,family="Times",height=7.5,width=10,pagecentre=FALSE)

par(lwd=1,las=1,mgp=c(2.3,1,0))

plot(as.factor(B),A,col="blue")

dev.off()

If you want to do more advanced pdf graphics, you can install
the so-called lattice package. Whith this package installed,
you can create graphs and save them as pdf using a special
graphics device, the so-called trellis device.

First, create three vectors of values A, B and C:

A<-seq(1,20,1) #creates two vectors A and B
B<-c(rep("A",10),rep("B",10))

A B

5
10

15
20

 36

C<-c(rep("C",5),rep("D",5),rep("E",5),rep("F",5))

Now load the lattice package,

library(lattice)

and start the trellis device like this:

trellis.device(pdf,file="C:\\File2.pdf",
encoding="WinAnsi",paper="special",pointsize=12,onefile=T)

Now comes the plotting command:

bwplot(as.factor(C)~A|as.factor(B))

In the end, the trellis device needs to be closed again, usig
the dev.off() command:

dev.off()

Alternatively, you may wish to create a postscript file using
the postscript driver inside the trellis device:

library(lattice)
trellis.device(postscript,file="C:\\File1.ps",color=F)
bwplot(as.factor(C)~A|as.factor(B))
dev.off()

A
5 10 15 20

C

D

E

F

A

5 10 15 20

B

 37

14 Creating publication-quality graphs

This is an example kindly provided by Andy Hector (Zurich,
Switzerland):

First of all, we start with creating two linearly correlated
variables:

x.var.1 <- c(1:10)
sequence.1 <- c(1:10)
noise <- rnorm(10, 1, 0.1)
y.var.1 <- sequence.1 + noise

Now we edit some of the graphics parameters;

par(mfrow=c(1,2),
mar=c(5,4,4,2)+0.1,
bty="l", pty="s", cex.lab=0.9,
tck=0.02, mgp=c(2, 0.3, 0))

y.label <- expression(paste("Insect density (m"^"-2",") "))
x.label <- expression(paste("plant mass (g m"^"-2",") "))
y.lim <- c(0, 10) ; x.lim <- c(0,10)

and finally start plotting:

plot(y.var.1 ~ x.var.1,
ylab=y.label, xlab=x.label,
ylim=y.lim, xlim=x.lim)

abline(lm(y.var.1 ~ x.var.1), lty = 2)
main="a) Insect A" ;

plot(y.var.2 ~ x.var.1, pch = 16,
ylab=y.label, xlab=x.label,
ylim=y.lim, xlim=x.lim)

abline(lm(y.var.2 ~ x.var.1))
main="b) Insect B" ;

 38

15 Statistical Modelling

15.1 Simple tests: The t test

The following example (from Altman 1991, cited in Dalgaard
2002) tests whether the daily energy intake of 11 women
differs significantly from a recommended value of 7725 kJ. We
can type this small dataset in directly, inspect some of its
properties and test it versus the expected value with the
t.test function (if we do not specify mu the default value is
taken as zero):

intake <- c(5260, 5470, 5640, 6180, 6390, 6515, 6805, 7515,
7515, 8230, 8770)

summary(intake)

0 2 4 6 8 10

0
2

4
6

8
10

plant mass (g m-2)

In
se

ct
 d

en
si

ty
 (m

-2
)

0 2 4 6 8 10

0
2

4
6

8
10

plant mass (g m-2)

In
se

ct
 d

en
si

ty
 (m

-2
)

 39

t.test(intake, mu=7725)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 5260 5910 6515 6754 7515 8770

t.test(intake, mu=7725)

 One Sample t-test

data: intake
t = -2.8208, df = 10, p-value = 0.01814
alternative hypothesis: true mean is not equal to 7725
95 percent confidence interval:
 5986.348 7520.925
sample estimates:
mean of x
 6753.636

The output gives the value of t, its probability and degrees
of freedom (which we could report in the text of a report or
paper).

15.2 Model Formulae in R
All model formulae in R have a similar form:

General form:

Linear Models

y ~ x – Simple regression
y ~ 1 + x – Explicit intercept
y ~ -1 + x – Through the origin
y ~ x +x^2 – Quadratic regression
y ~ x1 + x2 + x3 – Multiple regression
y ~ G + x1 + x2 – Parallel regressions
y ~ G/(x1 + x2) – Separate regressions
sqrt(Hard) ~ Dens+Dens^2– Transformed

ANOVA

y~A+B - two-way ANOVA
y~A*B - factorial ANOVA
y~A*B+Error(Block/plot) - split-plot ANOVA
y~A/B/C - nested ANOVA

More Model formulae

y ~ G – Single classification

response variable ~ explanatory varable(s)

 40

y ~ A + B – Randomized block
y ~ B + N*P – Factorial in blocks
y ~ x + B + N*P – with covariate
y ~ . - X1 – All variables except X1
. ~ . + A:B – Add interaction (update)

15.3 Regression

First, we create some artificial data to illustrate a very
simple linear regression :

x.var.1 <- c(1:10)
sequence.1 <- c(1:10)

Now we add some random noise to sequence.1 :

noise <- rnorm(10, 1, 0.1)
y.var.1 <- sequence.1 + noise

Finally, we create a second y variable, with all values being
25% lower than y.var.1:

y.var.2 <- y.var.1 - (0.25 * y.var.1)
data.1 <- data.frame(x.var.1, y.var.1)

Plotting these variables yields:

plot(x.var.1, y.var.1,col=”blue”)
points(x.var.1,y.var.2,col=”red”)

Our linear regression analysis involves the lm() command, and
we can plot the results using

abline(lm(y.var.1 ~ x.var.1), lty = 2,col=”blue”)
abline(lm(y.var.2 ~ x.var.1), lty = 2,col=”red”)

Now let´s come back to our initial dataset:

x <- 1:20

Make y a linear function of x plus normally distributed
deviations:

y <- x+rnorm(x)

Now create a plot of y against x:

plot(x,y)

 41

All data points seem to lie roughly along a straight line, so
it is sensible to try to fit a linear regression through the
data:

model1<-lm(y~x)
abline(model1)

And we inspect the parameter estimates using

summary(model1)

15.4 Non-Linear Regression

Let´s come back to our example from the course (the
"Puromycin" dataset):
Data on the "velocity" of an enzymatic reaction were obtained
by Treloar (1974). The number of counts per minute of
radioactive product from the reaction was measured as a
function of substrate concentration in parts per million (ppm)
and from these counts the initial rate, or "velocity," of the
reaction was calculated (counts/min/min). The experiment was
conducted once with the enzyme treated with Puromycin, and
once with the enzyme untreated.

First, let´s plot the data:

plot(rate ~ conc, data = Puromycin, las = 1,
 xlab = "Substrate concentration (ppm)",
 ylab = "Reaction velocity (counts/min/min)",

5 10 15 20

5
10

15
20

x

y

 42

 pch = as.integer(Puromycin$state),
 col = as.integer(Puromycin$state),
 main = "Puromycin data and fitted Michaelis-Menten
curves")

Now, we can fit a Michaelis-Menten model to these data:

 fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
 subset = state == "treated",
 start = c(Vm = 200, K = 0.05), trace = TRUE)
 fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
 subset = state == "untreated",
 start = c(Vm = 160, K = 0.05), trace = TRUE)
 summary(fm1)
 summary(fm2)

And now we can add the fitted lines to the plot:

conc <- seq(0, 1.2, len = 101)
lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)
lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)

And, finally, a legend:

legend(0.8, 120, levels(Puromycin$state),
col = 1:2, lty = 1:2, pch = 1:2)

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Puromycin data and fitted Michaelis-Menten curves

Substrate concentration (ppm)

R
ea

ct
io

n
ve

lo
ci

ty
 (c

ou
nt

s/
m

in
/m

in
)

 43

Let´s try another example: The "trees" data set provides
measurements of the girth, height and volume of timber in 31
felled black cherry trees. Note that girth is the diameter of
the tree (in inches) measured at 4 ft 6 in above the ground.

First, let´s look at different ways to plot these data:

pairs(trees, panel = panel.smooth, main = "trees data")

plot(Volume ~ Girth, data = trees, log = "xy")

par(mai=c(10,5,5,4))
coplot(log(Volume) ~ log(Girth) | Height, data = trees,
 panel = panel.smooth)

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Puromycin data and fitted Michaelis-Menten curves

Substrate concentration (ppm)

R
ea

ct
io

n
ve

lo
ci

ty
 (c

ou
nt

s/
m

in
/m

in
)

treated
untreated

 44

Now it seems that taking logs at both sides has linearized the
data:

model1<-lm(log(Volume) ~ log(Girth), data = trees)
summary(model1)

model2 <- update(model1, ~ . + log(Height), data = trees)
summary(model2)

Call:
lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees)

Residuals:
 Min 1Q Median 3Q Max
-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***
log(Girth) 1.98265 0.07501 26.432 < 2e-16 ***
log(Height) 1.11712 0.20444 5.464 7.81e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08139 on 28 degrees of freedom
Multiple R-Squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16

2.
5

3.
0

3.
5

4.
0

2.2 2.4 2.6 2.8 3.0

2.2 2.4 2.6 2.8 3.0 2.2 2.4 2.6 2.8 3.0

2.
5

3.
0

3.
5

4.
0

log(Girth)

lo
g(

V
ol

um
e)

65 70 75 80 85

Given : Height

 45

15.5 Analysis of variance

We can use our data from section “Regression” to work on:

x.var.1 <- c(1:10)
sequence.1 <- c(1:10)
noise <- rnorm(10, 1, 0.1)
y.var.1 <- sequence.1 + noise
y.var.2 <- y.var.1 - (0.25 * y.var.1)
data.1 <- data.frame(x.var.1, y.var.1)

y.long <- c(y.var.1, y.var.2) ; y.long
X <- rep(c("high" , "low"), c(10, 10)) ; X
X <- factor(X)
data.long <- data.frame(X, y.long) ; data.long ;

What do these data look like if we plot them?

plot(X, y.long)

par(mfrow=c(1,2))

#Boxplot

boxplot(y.long ~ X)

#Barplot

y.mean <- tapply(y.long, X, mean)

barplot(y.mean, ylab="Response variable", xlab="Treatment",
names=levels(X))

high low

2
4

6
8

10

 46

So far for the graphs of this dataset.

Now let´s try an easy one-way ANOVA using a new dataset. The
response variable is continuous (growth of plants). The
results are from an experiment to compare yields (as measured
by dried weight of plants) obtained under a control and two
different treatment conditions.

Let´s inspect our data first:

require(stats)
boxplot(weight ~ group, data = PlantGrowth, main =
"PlantGrowth data",ylab = "Dried weight of plants", col =
"blue")

high low

2
4

6
8

10

high low

Treatment

R
es

po
ns

e
va

ria
bl

e

0
1

2
3

4
5

6

 47

We could have also used boxplots with notches, as in:

boxplot(weight ~ group, data = PlantGrowth, main =
"PlantGrowth data",ylab = "Dried weight of plants", col =
"lightgray", notch = TRUE, varwidth = TRUE)

Now, here comes the ANOVA model:

model1<-aov(weight ~ group, data = PlantGrowth)
summary(model1)

 Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The next example we want to try out comes from an Agricultural
experiment:

data(InsectSprays)
names(InsectSprays)
InsectSprays

ctrl trt1 trt2

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

PlantGrowth data

D
rie

d
w

ei
gh

t o
f p

la
nt

s

 48

The response variable is counts of insects in agricultural
experimental units treated with different insecticides.

As usual, we start by plotting and inspecting the data:

require(stats)
 boxplot(count ~ spray, data = InsectSprays,
 xlab = "Type of spray", ylab = "Insect count",

 main = "InsectSprays data", varwidth = TRUE,
 col = "lightgray")

Now, let´s construct our first ANOVA model:

 fm1 <- aov(count ~ spray, data = InsectSprays)
 summary(fm1)
 par(mfrow = c(2,2)
 plot(fm1)

Let´s try the same analysis using a transformation of the
response:

 fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
 summary(fm2)
 plot(fm2)

A B C D E F

0
5

10
15

20
25

InsectSprays data

Type of spray

In
se

ct
 c

ou
nt

 49

15.6 Time Series

data(lynx)
ts.plot(lynx)

plot(acf(lynx))

Time

ly
nx

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

 50

15.7 A Generalized Linear Model (from Bill Venables)

Generalized linear models are an own class of models where you
can specify what error structure your data have. Generalized
linear models don´t have to be linear; they have to be linear
in their parameters. In general, such a model consists of
three parts:

- the linear predictor
- the link function and
- the Error Structure

The linear predictor is just another form of a regression
equation (y=a+bx), namely

∑= xßy , where

-y is the vector of individual data points (observations)
-the xs are the covariates in the model
-the ßs are the parameters or the model (whose values are to
be estimated)

The link function links the linear predictor to the
observations:

0 5 10 15 20

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

Series lynx

 51

∑= xßη is the linear predictor; ∑= xßη
The link function is then just the reciprocal of y=f(η).

The Error structure refers to the kind of errors associated
with our data, e.g.
- Poisson Errors for count data
- Binomial Errors for proportion data
- Gamma Errors for data on time-to-death

Specific Error Structures are often associated with so-called
canonical link functions:
- Normal Errors: Identity link
- Poisson Errors: Log link
- Gamma Errors: Reciprocal link
- Binomial Errors: Logit Link

So, let´s create again a dataset:

Budworms <- data.frame(Logdose = rep(0:5, 2),
 Sex = factor(rep(c("M", "F"), each = 6)),
 Dead = c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16))

Obviously, these are going to be proportion data (as budowrms
are either "dead" or "alive".

Budworms$Alive <- 20 - Budworms$Dead

To plot these data, we need the Lattice package:
library(lattice)

xyplot(Dead/20 ~ I(2^Logdose), Budworms, groups = Sex, panel =
panel.superpose, xlab = "Dose", ylab = "Fraction
dead",auto.key=T , type="b")

 52

And here comes the generalized linear model, using glm():

bud.1 <- glm(cbind(Dead, Alive) ~ Sex*Logdose, binomial,
Budworms, trace=T, eps=1.0e-9)

summary(bud.1)

"binomial" indicates we´re using binomial errors with a logit
link function. Let´s see if we can simplify this model:

bud.0 <- update(bud.1, .~.-Sex:Logdose)

Finally, we compare both models using "anova()":
anova(bud.0, bud.1, test="Chisq")

16 Generating Experimental Designs

There are some very useful built-in functions in R that allow
you to generate layouts for experimental designs.

The gl() command generates levels of a factor (which is very
useful for factorial designs):

gl(2, 8, label = c("Control", "Treatment"))

[1] Control Control Control Control Control Control Control
[8] Control Treatment Treatment Treatment Treatment Treatment Treatment
[15] Treatment Treatment
Levels: Control Treatment

Dose

Fr
ac

tio
n

de
ad

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

F
M

 53

INDEX

A

abline 15, 18, 19, 37, 40,
41

analysis of variance 6
Analysis of variance 45
ANOVA 39, 46, 47, 48
aov 47, 48
artificial dataset 13
aspect 27, 28, 29, 33, 34
assignment 13
attach 11, 12, 21
auto.key 34
axis 18, 23, 25, 26

B
barley, dataset 32
base 3
Binary Distributions 3
Binomial Errors 51
blank cells 12
blank space 12
box 25
boxplot 26, 46, 47, 48
Boxplots 4, 26, 45
boxwex 26
bwplot 36

C

c 13, 17, 18, 19, 20, 21,
22, 23, 25, 26, 30, 33, 35,
36, 38, 42, 48, 51

categorical variable 20
cbind 19, 52
close 11
coefficients 15, 18
Coefficients 15
col 8, 21, 22, 23, 25, 26,
30, 32, 35, 42, 46, 47, 48

colSums 18
command line 7
commands 7, 8, 9
Contributed Packages 7
coplot 24, 43
cor 18, 19
correlation coefficient 19

D

data 10, 11, 12, 13, 14,
15, 17, 19, 20, 21, 23, 26,
33, 39, 41, 42, 43, 46, 47,
48, 49, 50, 51

data.frame 10, 51
dataframe 10, 18, 20
dec 12
Decimal comma 12
decimal point 12
degrees of freedom 15, 39
dev.off 35, 36
dim 17
dnorm 22
dotplot 33
download 2

E
Error Structure 50
ethanol, dataset 34
Excel files, importing 11
exp 8
expand.grid 27
Experimental Designs 52
Exploratory Data Analysis
21

explorer 9
exporting 10
expression, add mathematical
annotations 37

F
File 8, 9
fill 12, 26
fix 17, 23
F-statistic 15

G

Gamma Errors 51
Generalized Linear Model 50
getwd() 10
gl 52
graph 9, 14, 15, 18
Graphical User Interface 9,
14

Graphics, recording
graphics.record 14

 54

graphs, creating publication
quality 4, 37

H

header 11, 12
help 6, 7
help.search 6
hist 21, 22

I
Import Excel 7
Importing 10, 11
InsectSprays, dataset 31,
32, 47, 48

install 3, 7, 35
interactive plots 7
intercept 15, 39
Intercept 15
iris, dataset 23, 33

L
lattice 32, 35, 36, 51
layout 33
legend 26, 42
length 12, 22, 23, 26, 30
library 7, 11, 32, 36, 51
Linear Models 39
linear predictor 50, 51
linear regression 14, 41
lines 18, 22, 23, 25, 42
link function 50, 51, 52
lm 15, 41
lm, linear models 37, 40
log 23, 43
lsfit 18, 19
lty 23, 42

M

main 7, 18, 37, 42, 43, 46,
47, 48

mar 25, 26, 30, 37
max 21
mean 18, 20, 22, 39
mfrow 22, 23, 37, 45, 48
mgp 35, 37
Microsoft Excel 10
Microsoft Office 2007 11
min 21, 41
missing values 12
mixed effects models 7

mixed-effects models 7
Model Formulae 39
mouse cursor 9
MS-DOS 9
mtext 25, 26

N

na.strings 12
names 2, 21, 30, 47
nlme 7
normal curve 22
numerical 20

O

odbcConnectExcel 11
Operating System 3
options 14
order 20

P
packageDescription 7
pairs 17, 23, 43
panel 22, 43, 51
panel.3dscatter 28, 30
panel.3dwire 28, 29
panel.grid 34
panel.loess 34
par 18, 22, 23, 25, 26, 30,
32, 35, 48

pdf 34, 35, 36
plot 8, 14, 18, 19, 22, 23,
25, 32, 35, 39, 40, 41, 42,
43, 48, 49, 51

points 14, 15, 23, 25, 41,
50

Poisson Errors 51
postscript 32, 34, 36
prepanel 34
print 8, 32
programming language 7

R

R Console 3
read.table 12
read.xls 11
Regression 40, 41
regression lines 18
rep 10, 13, 35, 36, 51
Residual standard error 15
rnorm 14, 17, 27, 37, 40

 55

RODBC 11
rowSums 18
R-Squared 15
runif 27, 28, 29

S
save 9, 10, 35
scales 27, 28, 29, 32, 33
scan 13
Scatterplot 22, 31
Script Window 8
scripts 7
sd 22
sep 12
seq 8, 10, 13, 22, 25, 30,
35, 42

setwd 10
simpleKey 32
slope 15
sort 20
Sorting 19
spatial data 7
spreadsheet 17
sqlFetch 11
step 13, 18, 22, 35
summarizing 19
summary 20, 38, 41, 42, 47,
48, 52

Summary 15
system 9, 10

T
t test 38
t.test 38, 39
table 20
tapply 20
text 7, 8, 9, 10, 11, 12,
25, 32, 39

text editor 7
Text files, advantages over
Excel files 12

Text files, tab-delimited
11

three-dimensional plots 26
tree models 7
Trellis 31
trellis device 35, 36
trellis graphics 7
Trellis plots 31
trellis.device 33, 36
trellis.par.get 32
trellis.par.set 32
type 6, 7, 8, 21, 23, 38,
51

V

vector 13, 22, 50

W

wireframe 27, 28, 29, 30
Working directory, setting
the 10

write.table 10, 12

X

xlab 18, 26, 32, 33, 41,
48, 51

xlsReadWrite 10
xyplot 31, 32, 33, 34, 51

Y

ylab 18, 26, 33, 41, 46,
47, 48, 51

 56

17 Author´s Address

Christoph Scherber
DNPW
Agroecology
Waldweg 26
37073 Goettingen
phone 0551-39 8807
e-mail cscherb1@gwdg.de

	1 What is R?
	2 Contents
	3 Why use R?
	4 Need Help?
	5 Contributed Packages
	6 The commands and the scripts window
	6.1 The commands window
	6.2 The Script Window
	6.3 Saving your work
	6.4 The working directory

	7 Importing and exporting data
	7.1 Importing from Microsoft Excel
	7.2 Importing from a text file
	7.3 Exporting data to a text file

	8 Typing in Data
	9 An introductory session
	10 Working with large datasets
	11 Sorting and summarizing data
	12 Creating high-level plots in R
	12.1 Exploratory Data Analysis
	12.2 Plotting a Histogram
	12.3 A simple Scatterplot
	12.4 Plotting multivariate data
	12.5 Line plot
	12.6 Boxplot
	12.7 Three-dimensional plots
	12.8 Piecharts
	12.9 Trellis Scatterplots

	13 Creating pdf´s and postscript files
	14 Creating publication-quality graphs
	15 Statistical Modelling
	15.1 Simple tests: The t test
	15.2 Model Formulae in R
	15.3 Regression
	15.4 Non-Linear Regression
	15.5 Analysis of variance
	15.6 Time Series
	15.7 A Generalized Linear Model (from Bill Venables)

	16 Generating Experimental Designs
	INDEX
	17 Author´s Address

